
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A283 104

THSIDgSJO.OO, 9_

_I.~

-L C

94-25215 oUj

REMOTE SENSING, PROCESSING AND
TRANSMISSION OF DATA FOR AN

UNMANNED AERIAL VEHICLE

by

Donald Benton Howard

June, 1994

Thesis Advisor: Michael K. Shields

Approved for public release; distribution is unlimited.

TLi0 Q'UALIY n=1-CT

Reproduced From
, 8 O0 006

Best Available Copy

REPORT DOCUMENTATION PAGE Form ApproVed OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing insmtction. searching
existing data sources. gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, inchuding suggesion, .or reducing this burden, to Washington Headquarters Services.
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway. Suite 1204, Arlington. VA 22202-4302. and :o the Office of Management
and Budget. Paperwork Reduction Project (0704-0138) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 1994 Master's Thesis

4. TITLE AND SUBTITLE REMOTE SENSING, PROCESSING AND 5. FUNDING NUMBERS

TRANSMISSION OF DATA FOR AN UNMANNED AERIAL
VEHICLE (U)

6. AUTHOR(S) Howard, Donald Benton

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING

Naval Postgraduate School ORGANIZATION
Monterey CA 93943-5000 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited. A

13. ABSTRACT (maximum 200 words)
This thesis chronicles the development of a proof-of-concept, stand-alone, Unattended Ground Sensor
(UGS) that can be used to sense and process signals associated with the motion of large vehicles, troops,
or aircraft. The results of this signal processing are then transmitted to an Unmanned Aerial Vehicle
(UAV). The UGS uses acoustic and seismic sensors to provide data to a Digital Signal Processing (DSP)
computer. Digital signal processing algorithms can be independently developed in the C programming
language and linked with the software developed for this project.

14. SUBJECT TERMS Unmanned Ground Sensor, UAV. Digital Signal Processing 15. NUMBER OF
PAGES 98

16. PRICE CODE

17. SECURITY CLASSIFI- 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFI- 20. LIMITATION OF
CATION OF REPORT CATION -OF THIS PAGE CATION OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Pscuribed by ANSI SLd. 239-18

Approved for public release; distribution is unlimited.

Remote Sensing, Processing and
Transmission of Data for an

Unmanned Aerial Vehicle

by

Donald Benton Howard

Lieutenant, United States Navy

B.S., University of Kansas, 1988

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

June 1994

Author: P'~-4 ~1~

Donald Benton Howard

Approved by: K~. YA4 -
Michael K. Shields, Thesis Advisor

Murali Tummala, Second Reader

Michael A. MorgChiman
Department of Electrical and Computer Engineering

ii

ABSTRACT

This thesis chronicles the development of a proof-of-concept, stand-alone,

Unattended Ground Sensor (UGS) that can be used to sense and process signals

associated with the motion of large vehicles, troops, or aircraft. The results of this

signal processing are then transmitted to an Unmanned Aerial Vehicle (UAV). The

UGS uses acoustic and seismic sensors to provide data to a Digital Signal

Processing (DSP) computer. Digital signal processing algorithms can be

independently developed in the C programming language and linked with the

software developed for this project.

Aooession For

NTIS GRA&I [
DTIC TAB 13
Unannounced "1
;%attSif icat ton

Distribution/ •+

Availability Codes

Availand/or
jj1 HDit Special

TABLE OF CONTENTS

I. INTRODUCTION 1

A. PROBLEM STATEMENT 1

B. THESIS SCOPE 2

II. BACKGROUND 4

A. UNMANNED AERIAL VEHICLE (UAV) 5

1. The UAV's Suitability for Intelligence

Gathering 5

B. UNATTENDED GROUND SENSOR (UGS) 9

1. Uses in the Vietnam Conflict 9

2. Uses in Tomorrow's Conflicts 12

C. SUMMARY 12

III. UGS HPJMDWARE DESIGN CONSIDERATIONS 13

A. SENSING DEVICE REQUIREMENTS 13

1. Acoustic Sensor 14

2. Seismic Sensor 14

3. Pressure Sensor 15

4. Magnetic Sensor 15

5. Global Position Sensor (GPS) 16

B. TRANSMISSION REQUIREMENTS 16

1. Message Format....................... . 16

iv

2. Transmitter Interfa.e.ý.e.. 17

3. Transmitter Requirements. 18

C. DIGITAL SIGNAL PROCESSOR (DSP) REQUIREMENTS . 20

1. Speed...20

2. Cost..20

3. I/O Capabilities..............................21

4. Signal Processing Capabilities...............21

5. Size..21

6. Energy Consumption............................21

7. Developmental Support. 22

8. Technical Support. 22

D. POWER SUPPLY REQUIREMENTS 22

E. SUMMARY ... 23

IV. UNATTENDED GROUND SENSOR HARDWARE...................25

A. DIGITAL SIGNAL PROCESSOR BOARD...................26

B. SENSING DEVICES...................................30

C. TRANSMITTER.......................................32

D. POWER SUPPLY......................................34

E. SUMMARY ... 35

V. SOFTWARE DESIGN CONSIDERATIONS AND IMPLEME17TATION 36

A. PROBLEM DEFINITION................................36

B. SOLUTION ALGORITHM................................37

C. ALGORITHM ENCODING AND DEBUGGING.................42

D. MODIFICATIONS FOR STAND-ALONE OPERATION 49

V

E. SUMMARY 50

VI. CONCLUSIONS AND RECOMMENDATIONS 52

APPENDIX A: DSP BOARD SUMMARY 54

APPENDIX B: FLOW DIAGP 'S FOR FILE 2105_HDR.DSP . 55

APPENDIX C: PROGRAM SOURCE CODE 61

APPENDIX D: PROCEDURES FOR COMPILING NEW CODE AND EPROM

LOADING .. 85

LIST OF REFERENCES 88

INITIAL DISTRIBUTION LIST 89

vi

ACKNOWLEDGMNT

I would like to thank Professor Shields and Professor

Tummala for their patience and guidance during the development

of this thesis. Their enthusiasm for research is very

contagious. I would also like, to thank Gordon Sterling of

Analog Devices and Farid Dibachi of Wavetron Microsystems for

enduring my many questions. Most importantly, I would like to

thank Alice, Caitlin, and Christianna for their support and

understanding.

vii,

I. INTRODUCTION

A. PROBLEM STATEMENT

Unmanned Aerial Vehicles (UAV) have been under development

for some time. They have enjoyed a degree of success in

operational environments. Recently, during Operation Desert

Storm, it became evident that UAVs could make a significant

contribution to a warfighting effort. As technology has

advanced, so too has the number of possible missions that can

be undertaken by an UAV. Much of the progress in UAV

technology can be attributed to the development of fast, small

computers. The Naval Postgraduate School is taking advantage

of these advances in computer technology and electronic

miniaturization in an ongoing research project to develop

several UAV platforms including a Vertical Takeoff and Landing

(VTOL) UAV called Archytas. As this project nears the

operational testing phase, more and more missions are being

envisioned.

One of the missions being considered is the gathering of

intelligence from ground detectors. The detectors could also

take advantage of state-of-the-art miniaturization and

computer technology. Many small low power digital signal

processing (DSP) circuit boards are presently on the market.

/1

These DSP boards could be used to sample data from sensors,

process this data, and send only the results to an UAV.

B. THEMI SCOPE

This thesis describes the design and construction of an

inexpensive, compact, self-contained detection device, capable

of processing and transmitting data. The device was designed

using current oft-the-shelf (COTS) technology hardware. The

process used to design, build, and test such a device is

detailed in the following chapters. This device will be

referred to as Unattended Ground Sensor (UGS).

Chapter II is a background chapter describing the

suitability of an UAV as an intelligence gathering device.

There is also a discussion in this chapter about the history

and the future of UGS systems. Chapter III addresses the

hardware design requirements for the UGS. The fourth chapter

discusses possible solutions to the design problem. It also

describes the equipment chosen to fulfill the design

requirements. Chapter V covers the software design

objectives. It also describes the programming philosophy and

solutions used in this design. The concluding remarks and

recommendations for future development are contained in

Chapter VI.

The device described herein is not suitable as the final

solution to the UGS/UAV combination. it is a technology

demonstrator and a good test bed for DSP algorithm testing.

2

It is also an excellent platform for UAV/UGS data link

testing.

3!

XX. BACKGROUND

The timely collection and evaluation of battlefield

intelligence has always been paramount to the success of any

warfighting scenario. This is still very true in todays

world. Recent advances in computer and micro-controller

technologies have breathed new life into some old techniques

of intelligence gathering.

The Naval Postgraduate School (NPS) in Monterey, CA has

been involved in a project that makes use of these advances in

technology to design Unmanned Aerial Vehicles (UAVs). The

potential of the UAV is best stated in the DoD, 1993 Unmanned

Aerial Vehicles (UAV) Master Plan:

Unmanned Aerial Vehicles (UAVs) can make significant
contributions to the warfighting capability of operational
forces. They greatly improve the quality and timeliness
of battlefield information while reducing the risk of
capture or loss of troops, thus allowing more rapid and
better informed decision making by battlefield commanders.
They are cost effective and versatile systems. While
reconnaissance, surveillance, and target acquisition
(RSTA) are the premier missions of UAVS, they can also
provide substantial capabilities in electronic warfare
(EW), electronic support measures (ESM), mine detection,

command and control and special operations mission are s.
UAVs are a particularly valuable adjunct to the Servic s'
aviation communities. They can readily perform a
multitude of inherently hazardous missions: those L.n
contaminated environments, those with extremely log
flight times and those with unacceptable political risks
for manned aircraft. Allotting these dirty and dangero s
missions to UAVs increases the survivability of manned
aircraft and frees pilots to do missions that require the
flexibility of the manned system.. UAVs are a viable
alternative as the Services wrestle with the many
challenges of downsizing the force structure.[Ref. 1]

4

As indicated above the potential tasks for an UAV are nearly

limitless.

One enhancement to the RSTA mission mentioned above is to

use the UAV as a central collection point for intelligence

transmitted by Unattended Ground Sensors (UGS). With current

technology, it is feasible to build a small UGS that can sense

environmental parameters, detect changes in them, and identify

the source that caused these changes. All of this can be done

by a small standalone unit the size of a 12 oz. soda can.

This chapter will discuss the characteristics unique to an

UAV that make it ideally suited for intelligence gathering.

In addition, it will describe the employment and contributions

of unmanned ground sensors in the Vietnam Conflict. Finally,

this chapter will discuss the potential of devices similar to

those used in Vietnam that utilize current technology.

A. UNMANNED AERIAL VEHICLE (UAV)

Currently there is considerable interest in the research

and development of Unmanned Aerial Vehicles (UAVs). UAVs are

an excellent compromise between the inexpensive, dumb drone

and the expensive, but versatile manned aircraft. This

section describes the UAV's suitability for intelligence

gathering.

1. The UAV' Suitability for Intelligence Gathering

Ideally an intelligence gathering device would have

the following qualities:

5

"* Inexpensive.

"* Expendable.

"• Low probability of being detected by the enemy.

"* Low probability of destruction by enemy.

"* Low failure rate.

"* Mission flexible.

"* Minim-m risk to friendly lives.

A drone is relatively inexpensive when compared to a manned

aircraft and is often expendable. However, it lacks mission

flexibility once it has been launched. For example, if the

drone detected an event worth further investigation during its

flight, it could not turn around and take a second look. This

inability to react to real time occurrences is a severe

limitation in intelligence gathering. On the other hand, a

manned aircraft is infinitely more flexible, but it also puts

human life at risk. This means that the situations most worth

investigating will not be pursued because they are too risky

to human life.

Recent advances in technology have made it feasible to

build a highly survivable, High-Altitude-Long-Endurance (HALE)

UAV. The issue of survivability can be broken down into two

separate categories, susceptibility and vulnerability.

Susceptibility is a measure cf the ease with which a system

can be detected and attacked. Vulnerability is an indication

of a systems ability to continue its mission once it has been

6

/

attacked. Both susceptibility and vulnerability must be

minimized to increase survivability. one method to reduce

susceptibility is to give the system the ability to defend

itself. Susceptibility can also be minimized by reduci-ng

radiated or reflected signatures. The second method decreases

susceptibility by lowering the probability of detection and

thereby, maintaining covertness. If the UAV is not detected,

it will not be fired upon. [Ref. 2]

The physical characteristics of an UAV will inherently

minimize its probability of being detected. The advent of

miniaturized electronics allows for the use of small, powerful

computers for flight control. Other crucial electronic

systems, such as the Inertial Navigation System (INS) and the

Global Positioning Systems (GPS), have also been reduced in

size. These developments tend to reduce the airframe size.

It is obvious that a small UAV is harder to be seen than a

larger manned aircraft. This is particularly true when the

small UAV is f lying at a high altitude. However, size can

also be related to the radar cross-section of the UAV. Since

UAVs are designed to carry smaller payloads than manned

aircraft, their airframes are smaller. This can translate

into a smaller engine. The use of nonmetallic, composite

materials in airframe construction also tends to reduce the

total weight and by that allow for a smaller engine. By using

smaller engines (less metal) and nonmetallic materials in the

7

airframe construction, the radar cross-section can be reduced

to achieve a lower probability of detection.[Ref. 2]

The use of a small engine in the UAV has the potential

to reduce the amount of radiated noise and heat to a level

below that generated by a manned aircraft. The minimization

of heat and noise generation will also lower the probability

of UAV detection.[Ref. 2]

To be an effective real-time intelligence gathering

tool, the UAV must transmit data to a control station. The

process of transmitting could compromise the UAV and make it

more detectable. Fortunately, the use of Spread Spectrum

communication techniques can reduce the probability o.

detection to acceptable levels.[Ref. 2]

Vulnerability is the other component of survivability.

Vulnerability is a measure of the inability of a system to

continue operating after it has taken a "hit.* One method to

lower the vulnerability of a system is to make it tougher.

This can be done by physically protecting vital systems.

Tough composite materials such as Kevlar or Glass Reinforced

Plastic (GRP) used in the construction of many UAVs will act

like Armor protecting vital systems and reducing

vulnerability.[Ref. 2]

Cost as well as survivability must be considered in

the evaluation of an intelligence gathering system. The cost

of an UAV is usually between that of a drone and a manned

aircraft. Normally the cost of an UAV is too high to consider

8

it expendable, but low enough to make it a cost-effective

alternative to a manned aircraft.

An UAV can be an inexpensive, highly-survivable,

mission-flexible tool. Additionally, because UAVs have a much

lower probability of detection than manned aircraft, they are

less likely to effect the actions of the enemy and thus

provide better intelligence. All of these factors combine to

make a HALE UAV the perfect instrument for gathering

intelligence.

B. UNATTENDED GROUND SENSOR (UGS)

The Unattended Ground Sensor can play an integral part in

battlefield intelligence gathering systems. Their utility was

proven during the Vietnam conflict.[Ref. 3] Even greater use

can be made of the UGS by incorporating some of today's

technology.

1. Uses in the Vietnam Conflict

Vietnam saw the first use of Unattended Ground Sensors

using a radio link to a remote monitor [Ref. 4]. In Reference

5, John Bergin states:

In 1966 the United States'began to build an electronic
barrier of acoustic, seismic, and radio sensors across the
northern border of South Vietnam, the panhandle of Laos,
and the eastern regions of Thailand to detect North
Vietnamese infiltration.[Ref. 5]

Bergin goes on to explain that these sensors were seeded by

air along the McNamara line. T~fey relayed the detected sounds

to on-station monitoring aircraft. This information was then

9

used to vector in air strikes against the most promising

targets. Around 1968 General Westmoreland started using some

sensors to monitor the perimeters of Marine bases. "They were

so successful in warning of enemy movements and identifying

targets for artillery and air support that General

Westmoreland obtained permission to postpone the completion of

the McNamara Line to use the sensors in tactical

operations."[Ref. 5]

The reviews of these new state-of-the-art devices were

nearly all-positive. Assertions were made at Congressional

• ings on the electronic battlefield that these devices were

Iz nsible for lowering the American death rate from 12

percent to 3 percent. In addition, claims were made that a

battalion with the sensors could monitor twice the area of a

nonsensor equipped battalion.[Ref. 3]

Although these sensors were successful, they had some

serious drawbacks. The first drawback was that they were

bulky thus making them difficult to deploy and easy to sight.

This problem was partially addressed by camouflaging them as

vegetation.[Ref. 5]

The second drawback was due to the short battery life

of the detectors. When the sensor batteries were exhausted or

near the end of their useful life, patrols had to L.. deployed

to replac.. the batteries. These battery replacement patrols

exposed the troops to unnecessary dangers.

10

A third drawback to the Vietnam era UC-S was their

inability to process raw data. Reference 4 states, "The

sensor signal must be processed and transmitted over a data

link, should ideally only transmit when a significant evenit

has occurred .. " The Unmanned Ground Sensors used in

Vietnam had to continuously transmit their data to a nearby

aircraft. This made the sensors vulnerable to detection and

location by radio direction finding equipment.

The final drawback stemmed from the fact that manned

aircraft were used to investigate sensor events. Unlike an

UAV, these aircraft were large and loud making them counter

detectable by the simplest of means. This allowed the enemy

the opportunity to alter their actions and avoid further

detection.

Since the Vietnam war, the UGS concept has evolved

through a series of programs. The Army started a program in

1972 to develop an all-weather, all-terrain, REmote Monitored

Sensor System (REMBASS) . This system was intended for

division level use and incorporated the Platoon-level Early

Warning System (PEWS). The PEWS became operational in 1980.

An Improved REMBASS (IREMBASS) system began development in the

late 1980's. The system developed here will be very much like

REMBASS, but with improved signal processing

capabilities. [Ref. 6]

11/

2. Uses in Tonrrow's Conflicts

All of the applications above have one thing in

common. They have relied on either a manned aircraft or

ground station to collect and relay or analyze the data from

the Unattended Ground Sensors. It is possible, with the

advances in computing power and data storacz, to build an UGS

that can analyze the sensed data on its own. The UGS would

then only need to transmit to relay stations or an UAV when

the detection criterion has been met. If this UGS technology

were to be coupled with an UAV as the receiver, sensor

detections could be immediately investigated with a low

probability of counter detection. The UAV could then transmit

video and infrared information to a command center for further

evaluation.

C. BUMMARY

Although sensor systems in the past have been successful,

their performance could be enhanced further with t* -

application of modern technology. The UGS/UAV combination has

great potential for safe, inexpensive, accurate, and stealthy

intelligence gathering. The application of this system could

range from the detection of men and vehicles to the detection

of a ballistic missile launch.

12

SI" I Ii

III. UGS EHARDWARE DESIGU CONSIDERATUINS

As is true for any system, many design factors must be

considered to produce the best product possible. Among these

factors are capabilities, cost, size, weight, and power

requirements. This proof-of-concept UGS z'ust meet the

following general design requirements. It should be a highly

capable, standalone, digital signal processing unit that is

small enough to fit in a container the size of a 12 oz. soda

can. It must also be capable of se. 4 .ng various environmental

parameters, processing this information, determining if the

detection criterion is satisfied, and notifying the UAV that

a detection has occurred.

The primary goal of this design is to produce a product

that meets all of the general design requirements. In

addition, it rust be constructed using low cost, commercial

off-the-shelf (COTS) components. This chapter details the

design approaches considered in each of the four major

hardware categories.

A. SENSING DEVICE REQUIREMENTS

There were five environmental parameters that were

considered in developing this device. These parameters were

chosen for evaluation based on their possible applicability

and on the environmental sensors that are readily available on

13

the commercial market. The sensors considered for use in

this de~sign were acoustic, seismic, pressure, magnetic, and

global position sensing (GPS) devices. This section discusses

each of these sensors and their applicability to this project.

1. Acoustic Sensor

An acoustic sensor can be a simple microphone. This

type of sensor has several advantages. .Microphones are small,

light weight, and have very low energy consumption. They are

also readily available. As a sensor it can be used to detect

an object of interest w:.en that object is loud, but not in

close physical proximity. Most microphones have a cycloid

beam pattern. This can be a disadvantage if the orientation

of the microphone cannot be controlled or if the exact

location of the target of interest is not known. There are

some microphones available, however, that have good fidelity

ranges and a hemispherical beam pattern. it was determined

that a microphone with a hemispherical beam pattern and a

frequency response of 50 Hz to 18,000 H z was necessary for our

particular application.

2. Seismic Sensor

A seismic sensor can measure very small movements of

the sensor itself. if the sensor is in solid contact with a

surface, it will measuZe the movement of that surface. These

movements can be detected at frequencies as low as 10 Hz.

14

Seismic sensors can vary greatly in size, weight, and

cost. one sensor investigated weighed 3.3 pounds and had a

volume of 25.8 in'. Another sensor weighed only 1.8 oz and

had a volume of 0.61 in3. The cost of these sensors ranged

from as high as several thousand dollars to as low as a few

hundred dollars.

The design requirenents specify that the UGS must be

small; therefore, the seismic sensor should be as small as

possible. In addition, it was determined that the UGS should

be sensitive to seismic signals within the frequency range of

1 to 1000 Hz.

3. Pressure Sensor

Pressure sensors are most useful in applications where

the pressure transmitting medium is dense or the sensor is

located very near the pressure source. It was determined that

neither of these situations would apply for our specific

application. As a result, no pressure sensor is included in

the UGS design at this time.

4. magnetic Sensor

The magnetic sensor can detect disturbances in thej

local magnetic field. These disturbances could be caused by

the passing of an iron based metal object or a current

carrying conductor in the proximity of the sensor. A tank,

for example, would have to pass within approximately one tank

length of the magnetic sensor to be detected. [Ref. 7] it is

15

anticipated that the UGS will not be close enough to the

object of interest to make use of a magnetic sensor.

Consequently, a magnetic sensor is not included in the current

UGS design.

5. Global Position Sensor (CPS)

GPS, if used, could determine the position of the UGS.

This information could be included in any communication with

the UAV. The position data could then be used by the UAV to

pinpoint the detection location or track a disturbed UGS.

However, for this application it assumed that the UGS's

position will be known at all times. The use of a GPS sensor

is, therefore, not required.

B. TRANSMISSION REQUIREMENTS

The UGS must be able to periodically transmit an "I am 0K"

signal and aperiodically transmit an "Alarm" signal if the

processed data indicates that a detection has occurred.

1. Message Format

The transmitted message must indicate the identity of

the UGS and whether an alarm condition exists. In addition,

it should encode the data to provide some error detection and

correction capability.

There are two different categories of information

coding:

Convolutional codes continuously encode long bit streams.
This method is best suited for continuous transmissions.

16

7/

*Block codes group the data into blocks and encode these
blocks as a unit.

This system will only be transmitting blocks of data;

therefore, convolutional coding is not necessary. Use of

block coding is appropriate here. [Ref. 8]

Several error detection/correction methods use block

coding. one such method adds a single parity bit to the data

block. This method will detect a single error, but will not

provide any error correction capability. Hamming Code is

another method, which uses 2 N_ 1 bits to describe 2 N_1-N data

bits. it can be used to detect and correct only single bit

errors: single error detection, single error correction

(SEDSEC). Adding another bit to the Hamming scheme above to

indicate overall parity will allow for the detection of two

bit errors. This scheme is called double error detection,

single error correction (DEDSEC) . It requires 2" bits to

encode the message and provides for 2 N_1-N data bits.

2. Transmitter Interface

The transmitter must be able to communicate with the

digital signal processor (DSP) board. This can be done via an

RS-232 serial communication port. Some DSP boards provide

these ports, while others do not. The UAV project currently

being developed at the Naval Postgraduate School, Monterey, CA

is using an intelligent RS-232 controller with an available

channel for communication with the UGS.

17

Another method of communication between the processor

and radio is to use the available output ports of the DSP

board. The types of output on the available DSP boards vary.

Most of the DSP boards surveyed provide an analog output.

However, one board investigated also provides a software

controlled serial output. Either the TTL compatible output or

the analog output could be used to c-mmunicate with a radio.

3. Transmitter Requirements

Besides satisfying the interface requirements, the

transmitter should have low energy consumption, be battery

powered, small, light weight, and secure. It also must ba

able to transmit to the UAV at a slant distance up to 30 Km.

A link budget was calculated to determine the transmitter

power required for this data link. Below is a list of the

assumptions made in calculating the link budget:

1. Transmit from ground to air.

2. Maximum slant range: R = 30 Km.

3. Transmission antenna: Monopole with 2.3 dB peak gain.

4. Pointing loss for transmission antenna: 5 dB

5. Transmit frequency: 900 MHz (spread spectrum)

6. Receive antenna: Double skirted ground plane with 6 dB
gain.

7. Pointing loss of receiving antenna: 1.0 dB

8. Moderate weather conditions.

18

As can be seen in Table I below the link budget calculations

indicate the transmitter must be able to radiate 1.55 watts of

power for adequate communication.

Table I UGS/UAV LINK BUDGET

Transmit Tx Plus Minus
Tx Antenna Gain (peak) 2.3 dB
Tx pointing loss 5.0 dB

Propagation
Free Space loss(%/4nR) 2 121.2 dB
Atmospheric absorption 0.0 dB
Precip absorption 0.0 dB

Receive Rx
Rx Antenna gain 6 dB
Rx Pointing 1.0 dB
Noise Power
Rx Noise (sensitivity=l gv) -107.0 dBm

Totals 8.3 dBm 20.2 dBm

Difference = -11.9 dbm

For a +20 dB signal margin, TX power Pt must be
31.9 dBm or 1.55 watts.

19

C. DIGITAL SXGXAL PROCESSOR (DSP) REQUIREMENTS

There are many DSP boards being marketed. These boards

vary in speed, cost, I/O capabilities, signal processing

capabilities, size, energy consumption, developmental support,

and technical support. The discussion below describes each of

these variables and their importance to this design.

1. Speed

There are two aspects of speed to consider for this

design. The first is processor speed. The processor must be

able to analyze the sampled data in a timely manner. This is

necessary to facilitate the transmission of an alarm signal

within a few seconds of a detection. Also, the faster the

processor, the more complicated an analysis can be c,.rried

out.

The second aspect of DSP board speed is the rate at

which a signal can be sampled. The board must be capable of

sampling the input ports at or above the Nyquist rate, a rate

equal to or greater than twice the highest frequency present

in the signal applied to the ports.

2. Cout

The DSP board is the most expensive component of this

design. The cost will be kept low by using COTS DSP boards.

In addition, the cost can be kept low by purchasing only what

is needed to fulfill the design requirements. Some allowance

20

can be made for expanded capabilities if the cost remains

reasonable.

3. X/O Capabilities

The DSP board must be able to accept at least two

analog input signals and have one output signal to communicate

with a transmitter. The output data can be transferred via an

analog port, a serial port, or a parallel port.

4. Signal Processing Capabilities

Digital signal processing is heavily based on

arithmetic operations. The DSP board should use a

microprocessor that easily executes arithmeti' instructions

such as multiplication, division, and shift operations.

The processor should also be able to perform bit

reversal to aid in the calculation of Fast Fourier Transforms

(FFT's). In addition it should have onboard memory for

storing raw and processed data.

5. Size

The UGS is to fit in a volume approximately the size

of a soda can. Consequently, the DSP board must be as small

as possible. Most DSP boards investigated required less than

25 in 3 .

6. Znezgy Consunption

The DSP board is the single largest load of all UGS

components. To keep the total energy consumption low, the

power required by the DSP board must be kept to a minimum.

21

//

This can. be achieved by choosing a DSP board that makes use of

low power CMOS technology. Additionally, some processors also

have a sleep mode permitting them to conserve energy.

7. Developmental Support

one of the biggest considerations in choosing a DSP

board is the developmental support that is provided. The DSP

system purchased should provide for the development,

debugging, and testing of user written code. This is vital in

the early stages of product development. However, it is not

as important once the user hi-s a satisfactory algorithm tested

and loaded on the DSP board.

8. Technical Support

Most current DSP systems are relatively new, this

means the accompanying documentation may be incomplete or in

error. It should be established that the technical support

department of the DSP board manufacturer is cooperative and

eager to help resolve any inaccuracies in the documentation or

technical problems.

D. POWER SUPPLY RZQuIEnu==9

The UGS is to operate in a stand-alone mode. This

requires that the DSP board, microphone, and transmitter are

powered by batteries. The size limitation of the entire unit

dictates that the battery cannot be too large. This unit,

however, must continue to operate for prolonged periods of

time. Both requirements put severe limitations on the energy

22 7

consumption of the DSP board since it is the largest load on

the power supply.

Most currently available DSP boards operate at five volts

and require 2-3 watts of power. For a three watt device this

means there is less than 11 hours of operational life for a 12

volt, 6.5 Amp-hr lead acid battery regulated to five volts.

To increase the operational lifetime of the system, the

following alternatives should be investigated:

"* Reduce system loading by replacing the DSP board with a

low power version.

"* Use efficient, high capacity batteries.

- Supplement the battery with solar power.

This proof -of -concept design will not ex~lore these

alternatives. Instead, this system will be developed using

both non-rechargeable batteries and sealed, lead-acid

batteries. It is anticipated that a production system would

use CMOS ASIC technology, reducing power consumption by a

factor of 1000.

Z. SUNWDARY

The design requirements will be met if the UGS is a stand-

alone unit that uses acoustic and seismic sensors to detect

and evaluate objects of interest. The evaluation will be

performed by a digital signal processing board capable of

receiving at least two input signals. In addition, the DSP

23

board must be able to send information packets indicatir- an

"alarm" or "I am OK condition to a transmitter. The

transmitter will be a spread spectrum UHF system that receives

these packets of information and relays them to the UAV. All

power for the UGS will be provided by batteries.

24

'V. UNATTENDED GROUND SENSOR HAIRDWA•

Previous chapters provide a brief backgrounO of the UGS

project and its design considerations. This chapter describes

the components that are considered for incorporation in this

project. It will also describe, in detail, the components

that are included in the final product and the reasons for

choosing them. Figure 1 shows a block diagram of the UGS

system as implemented.

ADSP- 2105 Seismic Sensor

DSP CARD 1 - 1000 Hz

- 16 Bit ADC
- 16 Bit DAC Acoustic Sensor
- RS-232 port 50-18,000 Hz I
- 2 serial bit IO pins
- 2 analog line inputs
- 2 analog line outputs I
- microphone jack Input UHF Data Radio

Batter

Figure I Unattended ground Sensor

25

A. DIGITAL SIGNAL PROCESSOR BOARD

The DSP board is the most important component of the UGS

system. As such, the proper selectiort of a DSP board was

paramount to the success of this design. Some design

requirements of Chapter III were given more weight than

others. The principal factors considered in this design were

signal processing and I/O capabilities. Since this project

was unfunded, the cost was another important factor. The next

level of priority was assigned to the amount of developmental

and technical support provided by the manufacturers. Finally,

the lowest priority design considerations were processor speed

and energy consumption. It was felt that, since this was a

proof-of-concept device, faster and more energy conservative

alternatives could be explored later.

Three DSP systems were considered for use in the UGS. A

table summarizing these systems and their attributes can be

found in Appendix A. The first of these was the Piranha 3111.

This DSP board is based on a Texas Instruments TMS320C31

processor made by DSP Research and costb approximately $1500.

The Piranha 3111 runs at 40 MHz, consumes about two watts of

power, and communicates with a motherboard via a full duplex

serial interface. The Piranha Evaluation Board (PEB) is a

developmental board that can hold one or two Piranha modules.

By using the PEB the Piranha modules can communicate

individually with a host PC. They can also communicate with

each other in a stand-alone mode by supplying the PEB with

26

+5/12 volts. The main drawback of the Piranha 3111 is that it

has only one analog I/O channel. The Piranha was not chosen

for development because of its limited tec.hmical support and

limited I/0 capabilities.

The second DSP board considered was the SBC- I1

manufactured by Innovative Integration of Moorpark,

California. The SBC-31 is a stand-alone processor also based

on the Texas Instruments TMS320C31, 32-bit floating-point DSP.

The board is very versatile with regard to I/O capabilities.

The SBC-31 supports two fully duplexed RS-232C serial channels

and a 48-bit digital I/O port. The fully configured SBC-31

supports analog inputs and outputs. The analog input channels

are sampled at 200 kHz and have 16 bit resolution. They can

be configured for 16 single-ended inputs, or eight

differential inputs; or four differential and eight single

ended inputs. The SBC-31 has four 16-bit, 200 kHz analog

output channels. When running at 50 MHz, it is capable of 25

MIPS sustained performance. (Ref. 9] This board was delivered

with its development package for $2500.00 and very good

technical documentation. The cost of the SBC-31 without the

development package is $1195.00. The biggest drawback for

this board is its power consumption. The fully configured

SBC-31 consumes about three watts of power. This high power

consumption is due, in large part, to its high signal sampling

rate and A/D conversions. The SBC-31 may be too capable for

this project. A slower, less capable board might consume less

27

.- . - , -

/ /

power and still meet the basic design requirements. However,

further investigation of an UGS system based on the SBC-31

could prove fruitful. Development of a second UGS system

based on the SBC-31 is currently planned by NPS.

The third and final DSP board considered was the EMB-1601A

manufactured by Wavetron Microsystems of Redwood, City,

California. The EMB-1601A, a block diagram of which is shown

in Figure 2, is a digital signal processing board based on

Analog Devices' ADSP2105 chip. This DSP board has two 16-bit

analog line inputs with RCA connectors, one microphone input,

and two 16-bit analog line outputs with RCA connectors. It

can sample the inputs at user determined frequencies that

range from 5.5125 kHz to 48.00 kHz. Additionally, the EMB-

1601A can be configured with a ten Mb/s synchronous serial

port and/or a 9600 bps, RS-232, serial port.[Ref. 10] The

RS-232 port with an optional development package permits

communication with a PC. This combination allows the user to

develop code on a PC and then download that code onto the EMB-

1601A for testing. Besides the I/O ports mentioned above, the

EMB-1601A has two parallel I/O pins that can be used for

signaling or processor control. The EMB-1601A has a 10MHz

crystal that allows it to execute instructions at a rate of

28

I.

MIXI

TT TT

8- ..

rigure 2 Block Diagram of

MM-1601A from [Ref. 10]

29

10 MIPS.[Ref. 11) It can operate in a stand-alone mode with

a power consumption of about two watts.

This unit was shipped to NPS with the following options:

"* 8K x 24 zero wait state SRAM.

"* RS-232 based development software and C command library.

"* DSP Assembler, Linker, and Simulator.

The total cost of this package was $1780.00. Some of the cost

was due to the onetime purchase of the development packages.

The cost of just the DSP board with SRAM was only $590.00.

There were several errors detected in the technical

documentation provided by Wavetron Microsystems and Analog

Devices. However, representatives from both companies were

very helpful and all noted discrepancies were quickly resolved

either by phone conversation or electronic mail. The EMB-

1601A meets all of the design requirements and is suitable for

use in this UGS system. The board layout for the EMB-1601A is
,V

shown in Figure 3.

B. ENBSZNG DEVICZB

There were two environmental properties considered best

suited for exploitation in this UGS. This project will make

use of airborne sound and low frequency ground vibrations by

sensing acoustic and seismic information. A mi rophone will

be used to sense the acoustic information, The specific V

30

"•'" - " -V*?.

64 cr32 kbyte
boot FPROM

10 Mb/s port ADSP-210[RS232

"j~ ~�'port

Reset I. [+5 volt,

101 Switch K

Ni pone R:-POO
IA1d j•f Rt Left Righ 0 RPo1
C in C in CIm out Chan out IRQ2

Figure 3 EMB-1601A Board Layout

microphone that was chosen is a Pressure Zone Microphone PZM-

180 made by Crown of Elkhart, Indiana. This microphone has a

hemispherical polar pattern that allows it to pick up sounds

around it at sound pressure levels as high as 120 dB. The

PZM-180 has a frequency response from 50 Hz to 18,000 Hz, with

an open-circuit sensitivity of 3.2 mV/Pa. This microphone

costs $190.00, and its characteristics make it ideal for the

UGS project.

The seismic information will be sensed by an Oyo Geospace

HS-J-K3A geophone. This sensor was chosen for its small size

and weight (0.6 in 3 volume and 1.8 oz. weight). Two of these

sensors along with their calibration data and mounting devices

were donated to this project by the Naval Surface Weapons

31

Center, Silver Sprinljs, Maryland. Figure 4 shows the geophone

as wired for connection to the DSP board.

RCA

Figure 4 HS-J-K3A Geophone with RCA Connector.

C.* TRANSMITZR~

Since the RS-232 port of the DSP board was needed for

development of this system, it was decided to use the two

parallel 1/0 (PIO) pins of the DSP board to send signals to

the transmitter. The PIO pins are TTL compatible and software

controlled. The software for this project was developed based

on the assumption that the transmitter chosen would take one

TTL input to enable transmission and another TTL input that

would carry the actual signal. Such a transmitter has not yet

been identified. However, an interim solution has been found

32

17 .

for testing purposes only and can be used until a transmitter

with the desired properties is identified or built.

A Lack of funding has prevented purchasing a

transmitter/receiver pair. Nonetheless, the device identified

as the temporary solutior for use in this project is a 27.145

MHz, phase modulated, four watt, battery powered transmitter.

It is made by Linear of Carlsbad, California and comes in

three different models (MRI61T, MR164T and MR168T). The

mcdels are differentiated based on the number of inputs they

can take. For example, model MR164T can encode and transmit

a unique message to the receiver for each of its four inputs.

Model MR168T can do the same for its eight inputs. The

transmitter senses the continuity of its input lines.

Transmission will occur if a normally open contact is shut or

a normally shut contact is o] ened. With simple modifications /

of the software, the PIO pins on the DSP board could be used

to trigger relays that would be used as the inputs to the

transmitter. One input could be used to indicate "I AM OK"

while another input would indicate an "ALARM" condition.

This transmitter radiates four watts of power, which is

more than the required 1.55 watts determined in Appendix B.

It draws less than 20 microamperes in standby and 0.8 amperes

durir7 its 4-5 second transmission time. The Linear

transmitters can be powered from an external 12-13.5 VDC power

supply or nine AAA alkaline batteries. A four-channel

33

i _ r

transmitter costs about $240.00 and an eight-channel receiver

costs about $300.00.

This family of transmitters and receivers meet most of the

design requirements; however, there are some reasons why it is

not desired to use these units in the final product. First,

the low transmission frequency requires a larger antenna than

that needed for high frequency systems (900 MHz). Second, the

receivers used with these transmitters can only handle a

maximum of eight channels and then only one channel at a time.

Finally, signals are not transmitted using spread spectrum

methods making it easy to locate the transmitters using Radio

Direction Finding (RflF) techniques.

D. POWER SUPPLY

The power supply for this device is a 12 volt, 6.5 Amp-hr.

gel-cell, lead-acid battery made by Power Sonic of Redwood

City, California. The +12 volt supply is regulated to +5.0

volts for the DSP board. The microphone is supplied by a

separate phantom battery source. The transmitter is supplied

by either the system 12 volt battery or its own internal AAA

batteries. Figure 5 below illustrates the circuit diagram

for the +5.0 volt DSP board power supply.

34

- :22

v ~ +
S-T I AD) I T

u Flguro 5 +5 volt DSP Power Supply

N . BU!IARY

After investigating the alternatives for the four hardware

categories, the following solutions were chosen for

implementation:

* Digital Signal Processing Board: Wavetron Microsystems'
EMB- 1601lA.

• Sensing Devices: Crown PZM-180 microphone, Oyo Geospace
geophone model HS-J-K3A.

* Transmitter: Linear's model MR164T four-channel
transmitter.

* Power Supply: Alkaline batteries and 12 volt gel-cell
lead acid battery.

A system with these components less the transmitter was

constructed and tested satisfactorily.

35

A2I2i

/

/

V. SOFTWARE DESIGN CONSIDERATIONS AND IMPLEMENTATION

The software phase of this design was a multi-step

process. The first step was to define the problem. Once the

problem was defined, a solution algorithm had to be developed.

The third stage was to implement the algorithm in code and

debug it. Finally, the code was modified to operate

independent of the development system and loaded on an EPROM

for board testing. This chapter describes the entire design

process, and the resulting problem solution.

A. PROBLEM DEFINITION

There are several objectives that must be accomplished in

this software design. The problem definition is based on

efficiently satisfying all these objectives. Below is a list

of the objectives for this design.

1)The overall software structure should be designed so that
it meets all of the objectives and is easily expanded by
linking in additional C language modules.

2)The code must be loadable onto a boot EPROM for stand-
alone operation.

3)The code must cause the DSP board to sample the line or
microphone inputs at a user determined frequency.

4)The code must process the sampled data to determine if an
"ALARM" condition exists.

5)The code must be able to perform hardware self-checks to
determine operability.

36

S... . • i• ."

6) The code must cause the DSP board to transmit device-
unique signals that periodically indicate "I AM OK" or
aperiodically indicate that an "ALARMn condition has
occurred.

B. SOLUTION ALGORITHM

There are several programming strategies or philosophies

that could be used individually or in combination to create a

program structure that will meet the above objectives. One

such programmuing strategy is called the Flow Driven method.

This method is used when a program needs to step through a

sequence of instructions with strict control interrupts and

external inputs. This approach is conceptually simple and is

good for lockstep type processes. However, it suffers from a

lack of flexibility. Consequently, this approach is least

suited for real-time applications.

A second approach is called the Clock Driven method. This

method is particularly well suited for maintenance type

algorithms where a controlling program must call subprograms

based on the amount of time expired on some clock. However,

the Clock Driven method may be too constraining if the

subroutine length is subject to variability or if the number

of subroutines is small.

A third approach to program structuring is called the

Interrupt Driven method. The Interrupt Driven method uses

real-time occurrences to cause the microprocessor to transfer

program control to an interrupt handling routine. This method

is excellent for real-time applications where immediate action

37

is required for a given event. Additionally, these interrupts

can be nested such that if the processor is servicing one

interrupt and a higher priority event comes along, the highest

priority event is always serviced imimediately at the expense

of the lower priority event. When the higher priority event

servicing is complete, the processor resumes servicing the

lower priority event. one drawback to using this method is

that the microprocessor design governs the number and type of

interrupts available.ý This will limit the program's

flexibility.

Figure 6 shows a structure chart f or the programming

algorithm used in this software design. The flow diagrams for

the individual blocks of this figure can be found in Appendix

B and the associated source code in Appendix C. As can be

seen, all three program structuring methods were used.

The Interrupt Driven method was used to handle

transferring information to and from the enCOder DECoder

(CODEC) peripheral. The Transmit Interru~pt (SPORTi TX) was

used during the hardware initialization phase. When the DSP

board is RESET, an initialization process is begun. This

process sets up the pertinent registers and parameters

necessary for the proper operation of the DSP board. At one

point in the initialization phase, the CODEC is placed in

Control Mode. Four control words are then sent to the CODEC

by the microprocessor. These control words specify various

operating parameters such as sampling rate, data format, and

38

stereo/mono mode. After each control word is sent, a SPORT1

TX interrupt is generated. The SPORT1 TX interrupt handler

carries out the handshaking routines to ensure the CODEC has

been initialized. The interrupt handler then places the

CODEC in Data Mode and disables the SPORT1 TX interrupt

Interrupt Vector Table
Reset IRQ2 SetialPortXMIT SeuialPortRCV Timer
Addresst000O Addressf1I304 Address.130010 Addressi0M014 Address.IS)0l8

notused •PORTI TX) (PORT! MC

ISPORTI TX SPORTI RX Timer
210.5hdu.dq intenupt interupt itenupt

21nd hl handler handler

2105_hdrc. 2105_hdr.p 210•_hdr.dsF

meano found
n clhnk.c
(contains a
crude detect
al rit

IAigo'itm ICheck'u I
or I[z (foNUN (frAtureI

deveopme4 d ve Unpmm developmet

Figaux 6 Program Structure Chart

39

after the CODEC initialization is complete. See Appendix B

for a flow diagram describing the SPORT1 TX routine.

Once the CODEC has been placed in Data Mode, the Receive

Interrupt (SPORT1 RX) is used to receive and store the sampled

data. This interrupt is also used to send data back to the

CODEC. The CODEC sends a four-word packet of data to the DSP

microprocessor at the sampling rate set while in Control Mode.

When the four-word packet is sent to the microprocessor, a

SPORT1 RX interrupt is generated by the CODEC. The interrupt

handler will do two things. The first thing the SPORT1 RX

interrupt handler does is, establish conditions for external

signaling. The microprocessor can generate external signals

via the CODEC. This is done by properly setting the value of

the fourth word in a four word packet (cntrl-l) that is sent

to the CODEC in the last part of this interrupt handler. The

value of the cntrll comes from one of the three message

arrays (RNORMAL", "I AM OK", and "ALARM"). The message array

chosen as the source for cntrll is based on the value of the

global variable SIGNAL_FLAG. The variable cntrl_l is assigned

the value of a message array element. After a certain number

(txn_divisor) of SPORTI RX interrupts has occurred, cntrl.l .

will be assigned the next value in message array. When the

end of the array is reached SIGNAL_FLAG will be checked again

to determine the ap;ropriate message array. Each entry in a

message array determines the voltage level of the two parallel

input/output pins (PI01, PIO0) on the DSP board. A more

40

7 -

/ -o

/4.

detailed explanation of this process can be found in the next

section.

The second thing the receive interrupt handler does is

read the data from the CODEC inputs. The same data is then

immediatelv written back to the CODEC for output with one

exception. It is at this point that a possibly modified

cntrll is sent to the CODEC to set the value of the PIO pins.

See Appendix B for a flow diagram describing the SPORT1 RX

interrupt handler.

The Clock Driven method has been used to periodically set

the SIGNAL_FLAG variable to a value indicating an "I AM OK"

condition. A timer onboard the microprocessor can be setup to

generate an interrupt with a period of up to 1.67 seconds.

However, the frequency of this interrupt must be reducee ,

hardware self-checks are to be conducted hourly. This was

done by introducing a scaling constant called one_hour. When

the one_hour variable is set to 2160, significant action will

only be taken on every 21601h Timer interrupt. This means the

interrupt handler will take meaningful action about once an

hour. The meaningful action for this interrupt is to set the

SIGNAL_FLAG variable to a value indicating an "I AM OK"

condition. SIGNAL_FLAG will only be set to "I AM OK" if there

is no preexisting "ALARM" condition. A flow diagram for the

Timer interrupt handler can be found in Appendix B. Future

versions of this program could call a hardware checking

subroutine from this interrupt and use the results of the

41

check to set the SIGNAL_FLAG variable to the appropriate

value.

The Flow Driven method has been used to initialize the DSP

board hardware, initialize the program variables, and call the

Main.c program. The initialization is accomplished every time

the EMB-1601A is powered up or reset. The Flow Driven method

was chosen for the initialization process because the steps of

this process must be completed sequentially with strict

control of all interrupts. Once all of the initialization has

been completed, the Main.c program can be called. Main.c and

its subroutines are also flow driven, but they must be

interruptable to allow the sampling and signaling interrupt

routines to operate. A flow diagram for the initialization

process can be found in Appendix B.

C. ALGORITIM ENCODING AND DEBUGOAGI

The development tools provided by Analog Devices include:

- C Compiler and C Preprocessor.

- ADSP-2100 Family C Runtime Library (floating-point math
functions, Digital Signal Processing functions, standard
C operations).

- C Source Level Debugging Utility.

* ADSP-2100 Family simulator.

* PROM Splitter

These software tools include a system builder. The System

Builder creates an architecture file (*.ach) from a user

42

written system file (*.sys) that describes the target system

being programmed. This architecture file is used by the

compiler to help determine where variables and code can be

placed. The system file for the EMB-1601A is called 2105.sys

and can be found in Appendix C. In addition to the system

builder, the software tools use an assembler, linker and a

PROM splitter. The PROM splitter converts the executable code

into a format that can be loaded onto a PROM.

The Wavetron Microsystems' development package includes:

* A boot PROM with the UART driver and user-code download
routine on it.

- Object code and source listing for a Fast Fourier
Transform routine.

* C++ functions and a library for initializing and
controlling the EMB-1601A from a C++ program.

* An Assembler, Linker, and System builder.

The Wavetron development tools were used exclusively in the

early phases of the programming process. The first step in

developing the software portion of this system was to create

a system file. Once this was done, the next step was to

assemble, link, and download an example program provided by

Wavetron. The example program consisted of a batch program

(*.BAT), several Analog Devices' assembly language modules

(*.DSP), and a C++ program (*.cpp). The batch file assembles,

links, and converts the object code to a format that can be

downloaded from the PC to the DSP board. The C++ program is

43

V/

:. .I, ' ,* , , , • ..

used to initialize the DSP board, establish a graphical

interface, and download the user-code onto the DSP board.

Once the C++ program downloads the DSP code onto the DSP

board, it receives data from the DSP board which is used to

display the frequency spectrum of the input signals on the PC.

The assembly language modules setup the interrupt tables,

perform an FFT on two incoming line signals and make the data

available to the PC for graphing on the PC monitor. Structure

.:harts for these programs are shown Figure 7. The ability to

graphically display the spectrum of sampled data made these

routines ideal for monitoring the response of the seismic and

acoustic sensors. All of the source files for this example

program can be found on the development software disk provided

by Wavetron Microsystems.

After the example program was running successfully, the

next step was to modify the program so that the voltage levels

at the P1O pins could be changed. As explained in the

previous section, this is accomplished by modifying the value

of the data words that are being sent to the CODEC. By

changing the value of the PIO bits in cntrl_l, the level of

the PIO pins can be changed. Figure 8 shows the format of the

four-word, 48-bit data stream that is sent to and received

from the CODEC. It should be noted that cntrl-l and cntrl_2

are subsets of the data stream and are treated as variables in

the programs. The variable cntrl_l was modified in the

receive interrupt (SPORTI RX). This modification was scaled

44

i-I I i -- i i I I I

to occur periodically after a set number of interrupts had

occurred. The scaling was done by setting the variable

txn_divisor to some desired value. A value of 5000 for A

txn_divisor causes a new value to be sent to the PIO pins at

a rate of once every two seconds. This slowed rate permits

visual monitoring of the changing PIO pin values by means of

an LED display.

Once the mechanism for changing the PIO pin values was

proven to work, the next step was to change the PIO levels

using the Timer interrupt. The timer's initial count, scaling

value, and reload values are set by writing the appropriate

values to the memory mapped Timer Registers. By writing to 7

these registers, the timer can be setup to generate a periodic

interrupt as described above.

The program was then modified to transmit two different

signals to the PIO pins. The first signal indicates an "I AM

OK" condition as generated by the Timer interrupt routine.

The second signal indicates an "ALARM" condition. The alarm

is periodically generated by setting SIGNAL_FLAG to the

"ALARM" value at the end of a large infinite loop in the main

body of the program. The Receive interrupt (SPORT1 RX)

handler periodically checks the SIGNAL_FLAG variable to

determine the message to be sent. Then the interrupt handler

sets the cntrl_l variable equal to the first value of the

appropriate message array and resets the SIGNAL_FLAG variable

45

A \

TI-• C++0 Load user's

S~DSP: code

Set contol mo Set data mod Set data mode
sfimcons output functions

LcClean up serial
G ,raph results.

por

User's DSP Code

bstff.dsp

(pprovided)
(provided) (providded)

Figure 7 Structure Charts for the Example Program

46

" \\

0 15 l6 31 323334 3940 41 42 474849 50 51525556596063

LeftChanziel Audio Right-Channel Audio OM LO 0 SM RO PI0 OVZ "I lO MA IRGI I IL
I

cnt-l_2 cntrll

OM Output lines on/mute

LO Left chan. output digtal attenuation
SM Mono Speaker on/mute
RO Right chan. output digital attenuation
P1O Parallel IO bits for system signaling
OVR sticky bit indicating ADC overrange
IS Input selection microphone/line
LO Input gain for left chan.
MA Monitor mx (amount of ADC output ining with DAC input)
RG Input gian for Azht chan.

Figure 8 16-Bit Stereo Data Word

to indicate a NORMAL condition. After txn_divisor interrupts

occurred, the cntrl_l variable is set to the next value in the

message array. When the end of the array has been reached,

the SPORTI RX handler reexamines the value of the SIGNALFLAG

variable and the process begins again. The bit pattern of the

messages can be easily modified to indicate the identity of

different UGSs by changing the message array values in the

source code. The code can also be easily modified for

operation with the Linear transmitters described in Chapter

IV. The source code for this step can be found in file

TRANSMIT.DSP listing in Appendix C.

After this algorithm was successfully encoded in Analog

Devices' Assembly language and debugged, the next step was to

link a C-language program with it. The C-program was kept

47

//

- £ --" / ,.

simple and was used to set the SIGNAL_FLAG variable to

indicate an alarm condition when the geophone input exceeded

a set threshold. This C-code can be found in the listing for

file CLINK.C in Appendix C. Linking the C-code with the

assembly language code proved to be quite difficult and

required considerable technical help from an Analog Devices'

programming consultant.

One of the difficulties in linking the programs stemmed

from the fact that the ADSP-2100 Family of processors have

five different memory spaces. Boot memory is one of these

memory spaces. The Boot Memory (BM) is split into eight pages

and each page is one-thousand words long for an ADSP-2105

processor. In addition to BM, there are internal (on chip)

and external Data Memory (DM) spaces. Program Memory (PM) is o

also split into internal and external sections. The size and

location of these memory spaces must be specified in the

system file as mentioned earlier. One of the problems was due

to the fact that there was no way to dictate where a compiled

C-program was to be loaded. The G21 compiler provided by

Analog Devices automatically placed the C-code at address

OxOOOO in internal PM. Since the code on the Wavetron

Microsystems' PROM also specified that the download routines

must be placed at address OxOOOO of internal PM, there was a

conflict in the memory spaces. This conflict prevented

loading C-linked code onto the DSP board from the PC. It was

48

//

,. : - • i •_:: .7,x"..,

+,.•\ . • /

determined that there was no solution to get around this

problem.

However, there were still two ways to test the code. The

first method was to run the code on the Analog Devices' system

simulator. 'Iae code tested by this method ran as expected.

Nevertheless, the only reliable way to test the code with C

modules linked in is to write the code for stand-alone

processor operation and load the code onto an EPROM. The

EPROM can then be installed on the DSP board and the code

tested. The process f or doing this is f ound in the next

section.

D. MODIFICATIONS FOR STAND-ALONE OPERATION

This section describes the next step in the software

development. After the code was tested either by simulation

or downloading it onto the DSP board by means of the Wavetron

Microsystems' utility programs, it was loaded onto an EPROM

and tested on the DSP board in a stand-alone mode.

This process required modifications to the assembly

language code. The EPROM would replace the Wavetron

Microsystems' PROM which had setup the interrupt table

vectors. This meant the stand-alone code must supply its own

interrupt table settings. It also meant that the modified

code had to be placed at address OxOOOO in PM. This would

ensure the interrupt table was in the proper location. With

these modifications made to the previously developed c ide, the

49

new code was then compiled and the executable (*.exe) code

obtained. The PROM Splitter was then invoked to convert the

executable code into a format suitable for booting. The

specific format of this bootable version is selectable by the

proper use of switches in the PROM Splitter (SPL21) command

line. The bootable code was then downloaded onto a 27C512

EPROM for DSP board testing. Appendix D contains procedures

that outline all of the steps that must followed in converting

a user's C-code to a programmed EPROM.

An EPROM was programmed at the end of each major stage of

the software design process to test the code on the DSP board.

The C-linked program was also loaded onto an EPROM and tested

satisfactorily. This successful test prov•i the ability to

link the user's C-code with the interrupt handlers.

Z. SUMMARY

The process to develop the code for this project involved.

several steps. The first step was to successfully load the

example code provided by Wavetron Microsystems onto the DSP

board. The next major step was to modify this code to prove

that the PIO pins could be manipulated for transmission. The

third step used the Timer interrupt and a large infinite loop

to select the type of signal to be transmitted. The final

step was to develop C-code that would examine the input data,

check for an alarm condition, and set the SIGNAL_FLAG

accordingly. Each of these steps were tested using a software

50

, J. -:

simulator. The code was then verified on the DSP board by

downloading it to the board via the PC or programming a boot

EPROM with the code.

There are only two ways to test code written in the C

programming language. The first method is to use the software

simulator provided by Analog r)evices. The secord method is to

link the C code with its assembly language header file and

load this file onto a boot EPROM. Once the boot EPROM is

installed on the DSP board, the code begins execution at power

up or when the reset switch is depressed.

51

A-

VI. CONCLUSIONS AND RECOMCENDATIONS

The Unattended Ground Sensor described in this thesis was

the best solution that could be provided with the resources

that were available at the time. The UGS in this design uses

a digital signal processing board manufactured by Wavetron

Microsystems to sample acoustic and seismic sensors. The

acoustic sensor is a microphone made by Crown and has a

hemispherical beam pattern. The seismic sensor is a small,

lightweight geophone made by Oyo Geospace.

The data from these sensors will be processed using DSP

algorithms that are to be developed. The DSP code developers

will be able to initiate an ALARM transmission simply by

setting the global variable SIGNALFLAG to a number greater

than zero. The software written for this project will carry

out the details of transmitting the ALARM signal.

A lack of funding prevented obtaining a transmitter for

incorporation in this design. However, a transmitter was

identified for temporary use. The transmitter chosen is made

by Linear and is typically used in burglar alarm systems. The

drawbacks of this transmitter are that it does not transmit in

spread spectrum mode and it transmits at too low of a

frequency. It is recommended that a small, high-frequency,

52

spread spectrum transmitter be developed specifically for use

in this project.

The major problem with the UGS designed for this project

is its high power consumption. The bulk of the power is drawn

by the DSP board itself. This problem was unavoidable in this

design due to the requirement to use commercially available

of-the-shelf technology. There are some DSP systems currently

being developed that use very low power. One of these systems

is the Underwater Digital Signal Processor (UDSP) made by

Mikros Systems Corporation. The UDSP is based on the Allied

Signals 1750-A microprocessor. It can compute at up to four

million instructions per second (MIPS) while consuming only

one watt of power. At five milliwatts it can carry out

computations at 10,000 operations per second. It is

recommended that low power devices like this one be

investigated further for use in future UGS designs.

This UGS, as designed, is a good platform for developing

and testing digital signal processing algorithms. Once these

algorithms have been shown to be effective, the UGS portion of

the UAV/UGS combination concept will have been proven.

53

APPENDIX A: DSP BOARD SUMMARY

Table I1 DIGITAL SIGNAL PROCESSOR COMPARISON CHART

aaXmV COST PON= 1/0

DSP TMS320C31 1500.00 2 W 1-analog I/O
Research/Piranha 3111

Innovative TMS320C31 1150.00 3 W 2-RS-232 chan
Integration/SBC-31 16-analog in

4-analog out
48-bit digital I/O

Wavetron ADSP-2105 590.00 2 W 2-line in
Microsystems/EMB-1601 2-line out
(with opti.inal memory) 1-mic in

2-PIO pins

54

V'

APPENDIX B: FLOW DIAGRAMS FOR FILM 2105_HDR.DSP

This Appendix contains the flow diagrams for the file
2105_HDR.DSP. This file is broken down into the following
sections:

"* Initialization Process

"* Transmit Interrupt Handler (SPORTl TX)

", Receive Interrupt Handler (SPORTI RX)

"* Timer Interrupt Handler

55

Initialization Process
2105_hdr.dsp

Variable & Constant Initialize DSP's serial KEY
declarations 1 port (SPORT1) registers Local variable

0 ------
Global variable

Inialize interrupt vector j Inialize DSP's interrupt
table j register and enable rogramn flow

[SPORT 7X interrupt

Goto reset addres n Send control words to j -- SPORT1 DX
begin execution CODEC and enable nterrupt handler

SPORT1

No .-. DMODE.FWOINo / -r '- '

Call 'C' library SPRTI TX Ceritrut
initalization routine]1temptJ ~comiplet~e?

yet

Initalize variables stored Set conditions for Auto- Enable Tuner
in DM and external PM buffering 1/0 to CODEC

Initialize ADSP-2105 Send Ist data word to Enable SPORT] RX
addressing registers CODEC and Tiner interrupts

Initialize software reg's Trm on SPORT] Call Ma c program
and place CODEC in
Control Mode

56

Transmit Interrupt (SPORTi X

Firsthlatwr T

DisNbl SPORTIT DidflCCOE toE No
go-LOC uitov Dtte Moloast wariable

covewo

CTRLIN y~l Ye

____Set

Receive Tntenmpt (SPORTi X
2105-hdr.dsp

nt revradyl SdSe etpg

40-4

Read toson Yes eePextpage lo

Reipters

58p

of

From previous page SPORT1RX page 2

Save additional Reset
registers used LOOPCNTR- "

SIGNAL FLAT IYes SIGNAL PL>A No

SIGNAIG

reset CTettvalue Of ALARM?
flippereO SIGNALeFLAG

LOOPCNR

eedt
Noat topo Yeso

messge bufe ? Se _F G v e ms bu rSet, current value et current value
0 ofe msg buffer to of msg buffer to

tpof ALARM top of I AMOK
buffer buffer

No yes

v0value of message top ON RA SIGN-AL FLAG bINL~A

write current

value of message
buffer to cntdI

Store address of[
nexmsgbuffer

KEY
I Restore Local variable
register 0

Global variable

To Previous page Program flow
control

59

S. •. .: /\

Timer Intemrpt
2105.hdr.dsp

Entry

Save registers

SIGNAL-FLAG

Does yGNAt FLAG-
ALARM?

Decrement

NUW NO NUMSEC

Does

N = SEC- 0? No RestoreRegisters

yes In

Set 1
NUM SEC- one hourJ

Set KEY
SINA FLAG K Local variable

IAM OK

Global variable

Proarmn flow
coz~ol

60

APPENDIX C: PROGRAM SOURCE CODE

This appendix contains listings of the following files:

"* 2105.SYS Description file for the system builder.

"* FREETEST.BAT DOS batch file that assembles, links,
and PROM splits TRANSMIT.DSP.

"* PIO_TEST.CPP C++ file used to initialize the PC for
communication with the DSP board and
send the user code to the DSP board.

"• TRANSMIT.DSP Assembly language code that tests the
use of the Timer interrupt to send an "I
AM OK" signal and a large infinite loop
to send an "ALARM" signal.

"* C-LINK.BAT DOS batch file that assembles, links,
and PROM splits 2015_HDR.DSP and
CLINK.C.

"* CLINK.C C file that compares sampled data to a
threshold value and sets the SIGNAL_FLAG
to the NALARM" value if the threshold is
exceeded.

* 2105_HDR.DSP Assembly language file that initializes
the DSP board, contains the interrupt
handlers, and calls the C program.

61

- .2 -. -
S / "• . 7 ,, ' :- , ,' . , . ,

t • -" •/ \. " ". ..Z -:•j !

2105.SYS

{Desc iption file for the System Builder specifies the
amount of data and program memory in the system. The file
also declares each page of boot memory which will be used.)

.SYSTEM dsps; (system name)

.ADSP2105; (specifies processor)

.MMAPO; {boot loading enable)

.SEG/ROM/BOOT=0 BOOT_0[1024]; {boot page zero)

.SEG/ROM/BOOT=l BOOTI[1024]; {boot page one)

.SEG/ROM/BOOT=2 BOOT_2[10241;
.SEG/ROM/BOOT=3 BOOT_3[1024];
.SEG/ROM/BOOT=4 BOOT_4[1024];
.SEG/ROM/BOOT=5 BOOT_5[1024];
.SEG/ROM/BOOT=6 BOOT_6[1024];
.SEG/ROM/BOOT=7 BOOT._7[1024]; (boot page seven)

(internal program memory at absolute address OxOOO, 1024
words long)
.SEG/PM/ram/abs=0/code/data intpm[1024]:

(external program memory 4096 words long. External program
memory and external data memory together cannot exceed 8192
words)
.seg/pm/ram/abs=12288/code/data extpm[4096];
.seg/dm/ram/abs=OxlOOO/data mode_select;

(external data memory 4096 words long.)
.seg/dm/ram/abs=8192/data extdm[40961;

(internal data memory 512 words long.)
.seg/dm/ram/abs=14336/data intdm[512];
.endsys;

62

7./

FREETEST. BAT

DOS batch file that assembles, links, and PROM splits
transmit.dsp. Transmit.dsp tests the software's ability to.
choose and send either an "ALARM" or "I AM OK" signal.
EMB_BOOT.DSP contains the interrupt table setup and routines
for downloading code from the PC. See Reference 10 for a
listing of EMBBOOT.DSP.

erase emb_send.dat
asm2l transmit.dsp -1
asm2l emb_boot.dsp -1
id21 emb_boot transmit -a 2105 -lib -x -g -e 210x
spl2l 210x emb_boot -i -bm
emb_load amb_send.dat

/

63

/ -----

I - I-

PIO_TEST.CPP

The following file is a C++ file used to initialize the PC
for communication with the DSP board and send the user code
to the DSP board.

/* Embedded board test */
#include "emb_head.hpp"
#include <stdio.h>
-#include <conio.h>
#include <dos.h>
#include <math.h>
#include <iostream.h>

void main (void)
(

clrscr);
init_ebl60l(l); /* Initialize EMB1601 on COM2 */

loadcode("emb_send.dat"); /* Load user's DSP code */
wait-1(5000); /* Wait 'til code is running */

cleanupcomo; /* Reset serial port */

6

/6

TRANSMIT. DSP

The following file contains code that uses the Timer
interrupt to periodically set conditions for sending an "I
AM OK" signal. It also utilizes an infinite loop in the
main body to establish conditions for sending an "ALARM"
signal.

.MODULE/RAM/ABS=OxBE/BOOT=O codedsp; {module name and load
location)

.CONST SYS_CTL_REG=Ox3FFF; (system control register)

.CONST mode_sel=OxlOOO; (latched control for Control / Data
line I

{ Variable Declaration
.VAR/RAM/CIRC CTRLIN[4];{circular buffers for data input

and)
.VAR/RAM/CIRC CTRLOUT[4]; (output for data mode and

control mode)
.VAR/RAM/CIRC DATAIN[4];
.VAR/RAM/CIRC DATAOUT_[8];
.var/ram/circ ALARM[16]; {signal buffers should all be the

same length)
.var/ram/circ IAMOK[16];
-var/ram/circ NORMAL[16];
.var/ram signal_flag, LOOP_CNTR;
.VAR/RAM FIRSTFLG; (First time thru flag)
.VAR/RAM DCB_FLG; (DCB software handshaking flag

between 1849 & 2105)
.VAR/RAM DMODEFLG; {1849 mode flag i.e. CONTROL or

DATA modes)
.VAR/RAM cntrll,cntrl_2, ARsave, AXOsave, flip,

flipper, AY1_save;
.VAR/RAM AXOH_save, AYliH_save, NUM_SEC, num.._samples,

dataval_;
.CONST one_hour=17; (1:1.67 sec ratio @ 5 kHz sampling,

2160=1 hour)
.CONST txn_divisor=2000; (used to slow rate at which bits

are transmitted, 2000 = ibit
every 0.4 sec when sampling at
5 Khz)

.CONST threshold=OXOOFF; {threshold for incoming signal
magnitude)

.CONST minsamples=300; {this is the min number of samples
to ensure)
(valid data is available.)

{ The following statements make these labels visible to
EMB_BOOT.DSP)
.ENTRY code_start;
.ENTRY irq2_intr;

65

.ENTRY irqljintr;

.ENTRY irqOintr;

.ENTRY timer_intr;

.ENTRY sport_txm_intr;

.ENTRY sport_rec_intr;

-. {.INTERRUPT VECTORS- -

codestart: JUMP through; {goto through: at reset)
irq2_intr: RTI; {Sample clock interrupt)
irql_intr: JUMP SETUPCONTROL; {transmit interrupt)
irqOintr: JUMP NEWDATA; {Receive interrupt)
timer-intr: JUMP HOUR; (Internal timer interrupt)
sport_t~M_intr: RTI; {Serial port transmit interrupt)
sportrec_intr: RTI; {Serial port receive interrupt)

setcontrol: {see EMB-1601A users manual for a detailed
description of the control words)

AXl = Ox212C; {samp freq=44.1 khz,stereo,pcml6,2104}
DM(CTRLOUT) = AXl;
AXl = 0x2200; {xtal2,64bits/frame,master,serial txn)
DM(CTRLOUT+1) = AXi;
AXl = OxCOFO; {(PIO=11, etc) Data mode

parameter defaults)
DM(cntrl 1) = AX1;
AXl = OxCO00; {OM, etc)
DM(cntrl_2) = AX1;
RTS;

resetflipper:
AXO = 0; {reset flipper and assign or step

buffer)
DM(flipper) = AXO;
AYI = DM(LOOPCNTR); (LOOPCNTR initialized at reset)
AR = AY1 +1;
DM(LOOPCNTR) = AR;
AXO = AR;
AY1 = %IAMOK; {get length of a message buffer.

Could have used the length of any message buffer)
AR = AXO - AY1;
IF LT JUMP FINISH;

AXO = 0;
DM(LOOP_CNTR) = AXO; (reset LOOP_CNTR)
AXO=DM(signal_flag); {get value of signal_flag)
AR=PASS AXO;
IF EQ JUMP NORMALXMIT; {are conditions normal?)
IF GT JUMP ALARMXMIT; (is there an alarm?)

IAMOKXMIT: I5=^IAMOK; {set up transmitting IAMOK)
L5=%IAMOK;
AXO=0; (return signalflag to normal after

transmit conditions set)

66

/

DM(signal_flag)=AXO;
JUMP FINISH; -

NORMALXMIT: 15=ANORMAL; {establish conditions for)
L5=%NORMAL; {no transmission)
JUMP FINISH;

ALARKXMIT: I5=AALARM; {set up for transmitting an)
L5=%ALARM; {alarm)
AXO=O; (return signal_flag to normal after7

transmit conditions set)
DM(signal_flag)=AXO;

FINISH:
AXO = DM(15,M7);
DM(cntrl-l) = AXO;
RTS;

fill_mssgbuffer:
M7=1; (fill buffers for auto transmit)

(===MSB is the transmit bit (piol). MSB-1 is the data bit
(pio0)- -------)

15=^ALARM; (id=0x0253, alarm=lsb=l)
L5=0;
DM(15,M7)=OXOOFO; (P0)
DM(15,M7)=OXCOFO; (CO)
DM(15,M7)=OXOCFO; (Cl)
DM(15,M7)=OXCOFO; {D1)
DM(15,M7)=OXOOFO; {C2)
DM(I5,M7)=0XC0i0; (D2)
DM(I5,M7)=OXOOFO; (D3)
DM(I5,M7)=OXCOFO; (D4)
DM(15,M7)=OXOOFO; {C3)
DM(I5,M7)=0XCOF0; (D5)
DM(I5,M7)=0X00F0; (D6)
DM(15,M7)=OXCOFO; (D7)
DM(I5,M7)=0X00F0; [D81
DM(IS,M7)=OXCOFO; [D9)
DM(I5,M7)=0X00F0; {D10)
DM(I5,M7)=0XCOF0; (ALARM BIT)

15=^IAMOK;
L5=0;
DM(15,M7)=0X40F0; (P0)
DM(I5,M7)=0X80F0; (CO)
DM(15,M7)=0X40F0; {CI1
DM(I5,M7)=0X80F0; {Dl)
DM(I5,M7)=0X40F0; {C2)
DM(I5,M7)=0X80F0; (D2)
DM(15,M7)=0X40F0; (D3)

67

DM(15,M7)=0X80F0; {D4)
DM(15,M7)=0X40F0; {C3)
DM(15,M7)=0X80F0; (D5)
DM(15,M7)=0X40F0; (D6)
DM(15,M7)=0X80F0; (D7)
DM(15,M7)=0X40F0; [D8)
DM(15,M7)=0X80F0; {D9)
DM(15,M7)=0X40F0; {D10)
DM(15,M7)=0X80F0; (ALARM BIT)

I5=^NORMAL;
L5=0;.
DM(15,M7)=0X40F0;
DM(I5,M7)=OX40FO; (ensures transmitter is off)
DM(15,M7)=0X40F0;
DM(I5,M7)=OX40FO;
DM(15,M7)=OX40FO;
DM(15,M7)=OX40FO;
DM(15,M7)=0X40F0;
DM(15,M7)=OX40FO;
DM(I5,M7)=OX40FO;
DM(15,M7)=0X40F0;
DM(15,M7)=0X40F0;
DM(15,M7)=0X40F0;
DM(15,M7)=0X40F0;
DM(15,M7)=OX40FO;
DM(15,M7)=0X40F0;
DM(15,M7)=0X40F0;
RTS;

through:
IFC=H#003F;{CLEAR ALL PENDING INTERRUPTS)
IMASK=H#0000;

{********** initialize variables and registers **********)

CALL setcontrol; (sets values of control words)
AR = %IAMOK-l; (initialize LOOP_CNTR to the length

of a message array - 1)
DM(LOOPCNTR) = AR;
AXO = txn-divisor;
DM(flipper) = AXO;
AXO = 1;
DM(flip) = AXO;
AXO=O;
DM(numsamples) = AXO;
DM(dataval) = AXO;
DM(modesel) AXO;
DM(signalflag) = AXO;
AXO = OxFFFF;

68

/\

i /

DM(Ox3FFD) =AXO; (loi.d TPERIOD)
DM(Ox3FFC) =,AXO; {load TCOUNT)
AXO = OxFF;
DM(Qx3FFB) = AXO; (load TSCALE)
AXO = one_ýhour;
DM(NUM-.SEC) = AXO;

(====Initialize the transmit buffers===---------------------)
CALL fill_mnssgbuffer;

{====Initilaize the addressing registers of 2105-======
L7=%CTRLIN;
17=^CTRLIN;
L6=%CTRLOUT;
M1=1;
M7=1;
16=^CTRLOUT;

(====Initialize software fas=--------------
AXO1l;
DM(FIRST-FLG) =AXO;
DM (DCB-.FLG) =AXO;
AXO=0;
DM(DMODE-FLG)=AXO; {in control mode
AYO=DM(CTRLOUT);

(====Initialize the DSP's SPORTi Serial port registers=====)

L2 = 0; {linear addressing for registerI
12 = Ox3fef; (point to last DM cntrl reg
DM(12,Ml) = OxODFF; { 16,M7,17,M7 sportl autobuffer

register)
DM(12,M1) = 383; {rfsdivl
DM(12,Ml) = 849; {sclkdivl
DM(12,Ml) = B#0100000100011111; { sportl control

register: internal sclk & rfs, normal framing mode
frame sync not inverted 16-bit word length)
(====Initialize the DSP's interrupt registers==-------------)

ICNTL=0x17;
IMASK=B#000100; (only SPORTi tx interrupt

enabled initially while in control mode
(====EPROM version does not need the next two lines.
Sampling freq is set in set_control. NOTE this is also the
bit rate for transmission===)

AXO = 0X2104; (set sample freq 5.5125 kHz)
DM(CTRLOUT) = AXO;

{..... Set bit test mask for DCB bit, used in tx interrupt
state machine....)

AYO=DM(CTRLOUT); { test mask for DOE bitI
(..send first control word to switch codec to data mode..

AXO=DM(16,M7); (send first l6bits of ctrl word)

TX1=AXO;
12=Ox3ffe;

69

DM(12,Ml) = OxOOO; {No Wait states)
DM(12,Ml) = OxOcl8; {system control reg: sportl

enabled I

{..... Wait for an interrupt indicating that transmit
register is ready for new data and that the 2105 has
received a l6bit word I

WAIT1: AX1=DM(DMODEFLG); (check dmode flag)
AR=PASS AXl;
IF GT JUMP GODMODE; (if set, in data mode I
JUMP WAIT1; { else, wait for initialization to

be completed from tx interrupt routine I

GO_DMODE: L7=%DATAIN; { init 17, L7 for rx autobuffer I
17=^DATAIN;
L6=%DATAOUT_; (init 16, L6 for tx autobuffer I
16=^DATAOUT_;
AXO=DM(16,M7); { send first l6bits of data I
TXI=A:"O;
AXO=OXOcl8;
DM(OX3FFF)=AXO; { turn on sportl }
IFC=B#000000111111; { clear all pending interrupts I
nop; { cycle for IFC latency)
ENA TIMER;
IMASK=B#000011; { sportl rx and timer interrupt on I

main_loop:
AXO = DM(dataval_);
AR=PASS AXO;
IF EQ JUMP mainloop;

secnd_loop:
AXO = DM(flip);
L.•=PASS AXO;
IF EQ JUMP NEXT; (get freshest data)
AXO=DM(DATAOUT_+l); (check right channel against

threshold)

AY1=threshold;
AR=AXO-AYI ;
IF' LT JUMP secndloc
AXO = 1;
DM(SIGNALFLAG) = AXO;
JUMP secnd_loop;

NEXT:
AXO=DM(DATAOUT_+5);(check right channel against

threshold)
AY1=threshold;
AR=AXO-AY1;
IF LT JUMP secndloop;
AXO = 1;

70

/\

DM(SIGNALFLAG) = AXO;
JUMP secndloop;

{ ==------Interrupt routines=======---------------------------
(Note: AYO contains a bit mask and must NOT be modified
elsewhere I
{ .. ýs....:.............I
SETUPCONTROL: AXO=DM(FIRSTFLG); (first time through ? I

AF=PASS AXO;
IF NE JUMP DECRFIRST; { if so, wait until next word

transmitted)
AX0=DM(DCB_FLG);
AR=PASS AXO;
IF EQ JUMP DCBFLG_SET;
AXO=DM(CTRLIN); (DCBFLG has not been set yet)
AR=AXO XOR AYO; {check all incoming bits

including DCB bit)
IF EQ JUMP SETDCB; (set flag if DCB was 0)
RTI;

DCBFLGSET: AXO=DM(CTRLIN); (DCBFLG was set)
AR=AXO AND AYO; {only check for DCB bit)
IF NE JUMP SETDMODE; {if DBC=I ready for datamode)
RTI;

SETDCB: AXO=0;
DM(DCBFLG)=AXO;
AYO=0x0400;
AXO=DM(CTRLOUT); {DCB was 0, prepare to send DCB=1,

DFR=0)
AR = AXO OR AYO;
DM(CTRLOUT)=AR;
RTI;

DECRFIRST: AXO=O;
DM(FIRSTFLG)=AXO; if first time, set flag=0)
RTI;

SETDMODE: IMASK=O;
AXO0=X0418; (disable sportl)
DM(OX3FFF)=AXO;

/
16 = ^DATAOUT_;
L6=0;
DM(16,M7) = OxOOO; (reset output & input data

buffers)
DM(16,M7) = OxOOO; (initialize embedded control

bits)
DM(16,M7) = OxCO00; (out line 1&2 enab,0 out

atten, speaker mute)
DM(I6,M7) = Ox4OFO; (PIO, etc)

71

/ .,/

(To set the digital output pin (open-collector)
set PI01 to the desirable value.)

(PIO=ll,OVR=O,IS=O,LG=O,MA=15,RG=01
DM(I6,M7) = Ox0000; {reset output & input data

buffers)
DM(16,M7) = OxOOO; {initialize embedded control

bits)
DM(16,M7) = OxCOOO; (same as aboveCO0O)
DM(16,M7) = Ox4OFO;

{PIO=01,OVR=O,IS=O,LG=O,MA=15,RG=O)
(To set the digital output pin (open-collector)

set PI01 to the desirable value.)
AXO=OX001F; V
DM(OX3FF2)=AXO; { sportl control: external tfs

external sclk & rfs
16 bit words)

AXO=1;
dm(mode-sel)=AXO; (set D/C high }
DM(DMODEFLG)=AXO; { set data mode flag

high I
RTI;

NEWDATA:
DIS BIT_REV;
DM(AR-save) = AR;
DM(AXO0save) = AXO;
DM(AYl-save) = AY1;
AY1 = DM(flipper);
AXO = txndivisor; {this number is used as a divisor to

slow transmission rate)
AR = AXO - AY1;
IF EQ CALL reset_flipper; {reset flipper and assign or

incr buffer)
AYl = DM(flipper);
AR = AYl + 1;
DM(flipper) = AR;
AXO = DM(flip);
AR = PASS AX0;-
IF NE JUMP secondhalf;

AXO=DM(DATAIN); { get LEFT channel data)
DM(DATAOUT_)=AXO; (output LEFT channel data I
AXO=DM(DATAIN+1); { get RIGHT channel data)
DM(DATAOUT_+l)=AXO; (output RIGHT channel data }
AXO = DM(cntrl_2);
DM(DATAOUT_+2)=AXO;
AXO = DM(cntrl-l);
DM(DATAOUT_+3)=AX0;
AXO = 1; { Toggle "flip")
JUMP nd_end;

72

, /.

secondjialf:
AXO=DM(DATAIN); { get LEFT channel data
DM(DATAOUT-+4)=AXO; { output LEFT channel data
AXOn-DM(DATAIN+1); { get RIGHT channel data .1
DM(DATAOUT -+5)=AX0; (output RIGHT channel data
AXO = DM(cntrl-.2);
DM(DATAOUTh_+6)=AXO;
AXO = DM(cntrl-l);
DM(DATAOUT_+7)=AXO;
AXO = 0; f Toggle "flip")

nd_end:
DM(flip) = AXO;
AYl=DM(numrksamples); (the following code sets the

data_val_ flag)
AXO=min...samples;
AR = AY1-AXO;
IF GT JUMP clean..up;
IF EQ JUMP clean~up-1;
AR = AY1 + 1;
DM (nurn..saznples) = AR;
JUMP clean~up;

clean~up~l: AXO = 1;
DM(data.-val-) = AXO;

clean_.up:
AYl = DM(AYl-save); (restore register)
AXO = DM(AXO-save);
AR = DM(AR~save);
RTI; (return

HOUR:
DM(AXOH-save) = AXO;
DM(AYlH-save) = AY1; {need to store AR)
AYl = DM(NUM-SEC) ;
AXO = DM(signal~flag);
AR = PASS AXO;
IF GT JUMP hour-end; (prevents overriding an alarm

condition)
AR = PASS AY1;
IF GT JUMP hour-end; (only send every NUN_SEC

seconds)
AYl = one-ýhour;
AXO = -1;
DM(signal_flag) = AXO; (set flag to indicate IAMOK)

hour-end:
AR = AY1 - 1;
DM(NUM...SEC) = AR;
AXO = DM(AXOH-save);
AY1 = DM(AYlH-save); (need to restore AR)

RTI;
* ENDMOD;

73

S. ~/'

C-LINK.BAT

This file is a DOS batch file that assembles, links, and
PROM splits twc input files. One of these files (clink.c)
is a C-language file that uses an infinite loop to
continuously monitor sampled input to determine if an ALARM
condition exists. If an ALARM condition does exist it sets
SIGNAL_FLAG to the appropriate value. The other file
(2105._hdr.dsp) is an assembly language file that contains
the interrupt table, interrupt handlers, and signal array
initializations. The header file (2105_hdr.dsp) is required
for a C-program to operate. A detailed description of this
batch file can be found in Appendix D.

asm2l 2105_hdr.dsp -1 -c -s
asm2l -1 -c -s -cp -DDMSTACK -DIMAGE=F.AM -DANY=RAM
frameIlg.dsp
g21 clink.c frame_Ig.obj -a 2105.ach.-mreserved=i2,i3 -v
-runhdr 2105_hdr.obj -g -save-temps -Wall -o cexample
spl2l cexample cprom -i -loader -bs 1024 -bb 2048

74

CLINK.C

This file is a C-language program that uses an infinite loop
to continuously monitor sampled input to determine if an
"ALARM condition exists. If an ALARM condition does exist it
sets SIGNALFLAG to the appropriate value.

extern int SIGNALFLAG;
extern int data val;
extern int DATAOUT[];

void
main()

int rightl,right2,checkdata,sat;
sat=l;

loopl:
check_data=data_val; /*do nothing until the data is

valid*/
"if (!checkdata) goto loopl; /*"goto" used because

optimizer prevents using do-while loop*/
loop2:

rightl=DATAOUT[[];
right2=DATAOUT[5];
if (rightl>255 II right2>255) SIGNALFLAG=l;/* threshold

is 255*/
goto loop2;

75

Ni.

- 75

./

A •" • • ' , ' " • ' - - • , . " , : ' - , . . . ,• / • ,

.. \ iii

2105_HDR.DSP

"This file is a modified version of transmit.dsp. It is
loaded at absolute address OxOOOO and is responsible for
establishing the interrupt table. In addition, for this
program to link with a C-program, the only registers that
could be changed permanently are 12 and 13. For this reason
the autobuffering registers had to be changed to 12 and 13.

.MODULE/RAM/ABS=OxOOOO ADSP2105_Runtime_Header; (NOTE: this
must be absOO00)

.CONST SYSCTLREG=0x3FFF; (system control register)

.CONST modesel=OxlOOO; (latched control for Control / Data
line Im •i{ ***)

.VAR/RAM/CIRC CTRLIN[4]; {circular buffers for data input
and)
.VAR/RAM/CIRC CTRLOUT[4]; (output for data mode and control

mode)
.VAR/RAM/CIRC DATAIN[4];
.VAR/RAM/CIRC DATAOUT (8];
.var/ram ALARM[16]; (signal buffers should be 16 long

for DEDSEC)
.var/ram IAMOK[16]; {all buffers must be the same

length)
.var/ram NORMAL[16];
.var/ram SIGNAL_FLAG_, LOOPCNTR;
.VAR/RAM FIRSTFLG; (First time thru flag)
.VAR/RAM DCBFLG; {DCB software handshaking flag

between 1849 & 2105)
.VAR/F " DMODEFLG; {1849 mode flag i.e. CONTROL or

DATA modes)
.VAR/I-..- cntrl-l,cntrl_2, AR_save, AXOsave, flip,

flipper, AYlsave;
.VAR/RAM AXOH_save, AY1H_save, ARH_save, NUM_SEC,

I0_save, buffaddr;
.VAR/RAM LO_save, numsamples, data:val_;
.CONST onehour=17; (1:1.67 sec ratio @ 5 kHz sampling,

2160=1 hour)
.CONST txn_divisor=z0O0; (used to slow transmission rate, 1

is minimu)m
.CONST min_samples=300; {this is the min num of samples to

ensure that the available data is
valid.)

.ENTRY __ilib-prog-term;

.EXTERNAL _lib_setupeverythin-.,

.EXTERNAL main_;

/

76

.global SIGNALFLAQ..;

.global DATAOUT_;

.global data_val_;

{----------INTERRUPT VECTORS==-------------------
code-start: JUMP through;nop;nop;nop;
irq2-intr: RTI;nop;nop;nop; (Sample clock interrupt)
sport~txn_intr: RTI;ncp;nop;nop; (Serial port transmit

interrupt)
sport-rec-intr: RTI;nop;Tiop;nop; (Serial port receive

interrupt)
irqljintr: JUMP SETUPCONTROL; nop; nop;nfop;
irqO~intr: JUMP NEWDATA;nop;nop;nop; (Receive interrupt)
timer-intr: JUMP HOtJR;nop;nop;nop; {Internal timer

interrupt)

set-control:
AXi = 0x2104; (samp freq=5.125 khz,stereo,pcml6,2104)
DM(CTRLOUT) = AXi;
AXl = x2200; (xtal2,64bits/frame,master,serial txn)
DM(CTRLOUT+1) = AXi;
AX1 = OxCOFO; {(PI0=11, etc) Data mode parameter

defaults)
DM(cntrl_1) =AX1;

AXi = OxCOQO; {OM, etc)
DM(cntrl_2) = AXi;
RTS;

reset_flipper:
DM(I0_save) =10;
DM(L0_save) =LO;
AXO = 0; (reset flipper and assign or step buffer)
DM(flipper) = AXO;
AY1 =DM(LOOPCNTR);

AR =AYl +1;
DM(LOOPCNTR) = AR;
AXO = AR;
AYl = %IAMOK; (could have used any msg buffer)
AR = AXO - AYl;
IF LT JUMP FINISHi;

AXO = 0;
DM(LOOPCSNTR) = AXO;
AX0=DM (SIGNALFLAG..j;
AR=PASS AXO;
IF EQ JUMP NORMAL_XMIT;
IF GT JUMP ALARM_XMIT;

IAMOKXMIT: IO=AIAMOK;
L0=0;
AXO=O; (return to normal after transmit)
DM(SIGNAL_FLAGJ =AXO;

77

JUMP FINISH2;

NORMAL_XMIT: I0=ANQRMAL;
L0=0;
JUMP FINISH2;

ALARMXIVIT: I0=^ALARM;
L0=0;
AXO=O; (return to normal after transmit)
DM(SIGNALFLAG2 =AX0;
JUMP FINISH2;

FINISHi: 10 = M(buff-addr);
FINISH2: AXO DM(I0,M1);

DM(cntrl-l) =AXO;

DM~buff-addr) = 10;
10 = DM(IO-save);
LO = DM(LO...save);
RTS;

fillmssgbuffer: (fill buffers for auto transmit)
(==-=MSB is the transmit bit (piol). MSB-l is the data bit
(pi~o).------==

IO=^ALARM; {id=0x0253, alarm=lsb=1)

DM(I0,Ml)=OXOOFO; (P01
DM(I0,Ml)=OxCOFO; {CO)
DM(IO,Ml)=OXC'OFO; (Cl)

'DM(IO,Ml)0OxCOFO; {Dl)
DM(IO,Ml)=OxOOFO; {C2)
DM(I0,Ml)=OxCOFO; {D2)
;DM(I0,Ml)=OxOOFO; (M3)
ýDM(I0,Ml)=OxCOFO; (D4)
DM(I0,Ml)=OxOOFO; {C3)
'DM(I0,Ml)=OxCOFO; {D5)
DM(I0,Ml)=OxOOFO; {D6)
DM(I0,Ml)=OxCOFO; {D7)
DM(I0,M1)=OxOOFO; {D8)
DM(I0,Ml)=OxCOFO; {D9)
DM(IO,Ml)=OxOOFO; (DiOI
DM(I0,Ml)=OxCOFO; (ALARM BIT)

10 = 'IAMOK;

L0=0;
DM(I0,Ml)0OX40F0; {P0)
DM(I0,M1)0Ox80F0; {CO)
DM(I0,Ml)=0x40F0; {Cl)
DM(I0,Ml)0Ox80F0; {Dl1
DM(I0,M1)=Ox40F0; {C2)
DM(I0,M1)=Ox8OF0; {D21

78

DM(IO,M1)0Ox40F0; (D3)
DM(I0,M1)0Ox8OF0; {D4)
DM(IO,M1)0Ox40FO; (C3)
DM(10,Mlh=Ox8OFO; {D5)
DM(I0,Ml)=Ox4OF0; [D6)
DM(IO,M1)=Ox80FO; {D7)
DM(IO,Ml)=Ox40FO; {D8)
DM(I0,Ml)0Ox8OF0; (D91
DM(I0,Mlh=Ox4OFO; (D1O)
DM(IO,Mlh=Ox8OFO; (ALARM BIT)

IO0^NORMAL;
L0=0;
DM(10,Ml)0Ox40F0; (ensures transmitter is off)
DM(I0..M1)=Ox4OFO;
DM(I0,M1) =Ox4OFO;
DM(I0,M1)=Ox40F0;
DM(IO,M1)=Ox4OFO;
DM(IO,M1)=0x40F0;
DM(I0,M1)=Ox4OFO;
DM(I0,M1)=0x4OF0;
DM(IO,M1)=0x40FO;
DM(I0,M1)0Ox40F0;
DM(IO,M1)0Ox40FO;
DM(I0,Mlh=Ox4OFO;
DM(IO,M1)=Qx4OFO;
DM(I0,M1)0Ox40F0;
DM(I0,M1)0Ox4OF0;
DM(I0,M1)=Ox40F0;
RTS;

through:
CALL __libýsetup~everything;
IFC=H#003F; (CLEAR ALL PENDING INTERRUPTS)
IMASK=H# 0000;
CALL set_control;
AXO = %IAMOK -1; (could have used any buffer for

length)
DM(LOOPCNTR) =AXO;

AXO = tOm-divisor;
DM(flipper) = AXO;
AXO = 1;
DM(flip) = AXO;
AXO=O;
DM(num...saznples) =AXO;
DM(data-val-..) AXO;
DM(mode-sel) =AXO;

DM(SIGNAL_FLAGJ = AXO;
AXO = OxFFFF;
DM(Ox3FFD) =AXO; (load TPERIOD)

79

DM(Ox3FFC) = AXO; (load TCOUNT)
AXO = 0xFF;
DM(0x3FFB) = AXO; {load TSCALE)
AXO = one-hour;
DM(NUMSEC) = AXO;

{====Initialize the transmit buffers=======================}

CALL fill_mssgbuffer;
(====Initilaize the addressing registers of 2105===========}

L3=%CTRLIN;
I3=^CTRLIN;
L2=%CTRLOUT;
I2=^CTRLOUT;

[====Initialize software flags --

DM(FIRSTFLG) =AX0;
DM(DCBFLG) =AX0;
AXO=O;
DM(DMODEFLG)=AXO; { in control mode I
AYO=DM(CTRLOUT);

{====Initialize the DSP's SPORT1 Serial port registers=====)

LO = 0; { linear addressing for register }
10 = Ox3fef; { point to last DM cntrl reg I
DM(I0,M1) = 0x04B7; { 12,Ml,I3,Ml sportl autobuffer

register)
DM(IO,MI) = 383; { rfsdivl }
DM(I0,M1) = 849; sclkdivl }
DM(I0,M1) = B#0100000100011111; { sportl control

register: internal sclk & rfs, normal framing mode
frame sync not inverted, 16-bit word length I
(====Initialize the DSP's interrupt registers==============)

ICNTL=0x17;
IMASK=B#000100; (only SPORTI tx interrupt

enabled initially while in control mode I
{..... Set bit test mask for DCB bit, used in tx interrupt
state machine....)

AYO=DM(CTRLOUT); (test mask for DCB bit }
(.send first control word to switch codec to data mode....)

AXO=DM(I2,M1); { send first 16bits of ctrl word }

TX1=AXO;
I0=Ox3ffe;
LO=O;
DM(I0,MI) = OxOOOO; {No Wait states)
DM(IL,Ml) = OxOcl8; (system control reg: sportl

enabled)

80

.4 - i I- I-

{..... Wait for an interrupt indicating that transmit
register is ready for new data and that the 2105 has
received a 16bit word }

WAITI: AX1=DM(DMODEFLG); (check dmode flag 3
AR=PASS AXI;
IF GT JUMP GODMODE; (if set, in data mode }
JUMP WAIT1; { else, wait for initialization to

be completed from tx interrupt routine I

GO_DMODE:
L3=%DATAIN; init 13, L3 for rx autobuffer I
I3=^DATAIN;
L2=%DATAOUT_; init 12, L2 for tx autobuffer I
12=^DATAOUT_;
AXO=DM(I2,MI); (send first 16bits of data I
TX1=AXO;
AX0=0x0cI8;
DM(Ox3FFF)=AXO; { turn on sporti1
IFC=B#000000111111; { clear all pending interrupts I
nop; { cycle for IFC latency I
ENA TIMER;
IMASK=B#000011; (sporti rx and timer interrupt on I

CALL main-; {Begin C program)
.libprogterm: JUMP _.libprogteym;

{ =.......Interrupt routines=================================)
{ Note: AYO contains a bit mask and must NOT be modified
elsewhere)
{............................ I..........................ISETUPCONTROL: AX0=DM(FIRST_FLG); { first time through ?)

AF=PASS AXO;
IF NE JUMP DECR_FIRST; { if so, wait until next word

transmitted)
AXO=DM(DCBFLG);
AR=PASS AXO;
IF EQ JUMP DCBFLG_SET;
AX0=DM(CTRLIN); {DCB_FLG has not been set yet)
AR=AXO XOR AYO; {check all incoming bits

including DCB bit)
IF EQ JUMP SETDCB; {set flag if DCB was 0)
RTI;

DCBFLGSET: AXO=DM(CTRLIN); {DCBFLG was set)
AR=AXO AND AYO; {only check for DCB bit)
IF NE JUMP SETDMODE; {if DBC=I ready for datamode)
RTI;

SETDCB: AXO=0;
DM(DCBFLG)=AXO;
AYO=0x0400;

81

/

AXO=DM(CTRLOUT); {DCB was 0, prepare to send DCB=1,
DFR=O1

AR = AXO OR AYO;
DM(CTRLOUT)=AR;
RTI;

DECR-FIRST: AXO=0;
DM(FIRSTFLG)=AX0; { if first time, set flag=O }
RTI;

SETDMODE: IMASK=O;
AXO=0x0418; {disable sportli
DM(Ox3FFF)=AXO;

12 = ^DATAOUT_;
L2=0;
DM(12,Ml) = OxOOO; (reset output & input

data buffers)
DM(12,Ml) = OxOOO; {initialize embedded

control bits)
DM(12,Ml) = OxCO00; {out line U&2 enab,0 out

atten, speaker mute)
DM(12,Ml) = Ox4OFO; {PIO, etc)

{To set the digital output pin (open-collector) set PI01 to
the desirable value.)

(PIO=l1,OVR=0,IS=0,LG=0,MA=15,RG=0)
DM(12,Ml) = OxOOO0; {reset output & input

data buffers)
DM(12,M1) = OxOOOO; (initialize embedded

control bits)
DM(12,Ml) = OxCO00; (same as aboveCO0O)
DM(12,Ml) = Ox4OFO;

(PIO=01,OVR=O,IS=0,LG=0,MA=15,RG=O)
{To set the digital output pin (open-collector)set PIO1 to
the desirable value.)

AX0=0x001F;
DM(Ox3FF2)=AXO; { sportl control: external tfs,

external sclk & rfs 16 bit words IAX0=I;
dm(mode-sel)=AXO; { set D/C high)
DM(DMODEFLG)=AXO; { set data mode flag high)
RTI;

NEWDATA:
DIS BITREV;
DM(AR save) = AR;
DM(AXOsave) = AXO;
DM(AYlsave) = AY1;
AY1 = DM(flipper);

82

AXO =txn-divisor; (this number is used as a divisor
to slow transmission rate)

AR =AXO - AYl;
IF EQ CALL reset_flipper; (reset flipper and assign or

incr buffer}
AY1 =DM(flipper);
AR =AYl + 1;
DM(flipper) = AR;
AXO =DM(flip);

AR =PASS AXO;
IF NE JUMP second_half;

AXO=DM(DATAIN); { get LEFT channel data)
DM(DATAOUT..j=AXO; { output LEFT channel data)
AXO=DM(DATAIN+1); { get RIGHT channel data)
DM(DATAOUT_+1)=AXO; (output RIGHT channel data)
AXO = DM(cntrl...2);
DM (DATAQUT_+2)=AXO;/
AXO = DM(cntrl-l);
DM (DATAOUT_+3) =AXO;
AXO = 1; { Toggle "flip")
JUMP ndend;

second_half:
AXO=DM(DATAIN); (get LEFT channel data)
DM(DATAOUT_+4)=AXO; { output LEFT channel data)
AXO=DM(DATAIN+1); (get RIGHT channel data)
DM(DATAOUT_+5)=AXO; {output RIGHT channel data)
AXO = DM(cntrl-2);
DM (DATAOUT-..+6)=AXO;
AXO = DM(cntrl-l.);
DM(DATAOUT_+7)=AXO;
AXO = 0; (Toggle "flip")

nd-end:
DM(flip) = AXO;
AY1=DM(nuxn...samples); (the following code sets the

data_val_ flag)
AXO=min-saznples;
AR = AY1-AXO;
IF GT JUMP clean~up;
IF EQ JUMP clean~up~l;
AR = AY1 + 1;
DM(num~samples) = AR;
JUMP c lean~up;

clean...up~l: AXO = 1;
DM(data...val-) = AXO;

clean~up:
AY1 = DM(AY1...save); (restore registers)
AXO = DM(AXO...save);
AR =DM(AR...save);

83

RTI; {return

HOUR:
DM(AXOH -save) = AXO;
DM(AY1H-save) = AYl;
DM(ARH-save) =AR;

AY1 = DM(NIUhLSEC);
AXO = DM(SIGNALFLAGj);
AR = PASS AXO;
IF GT JUMP hour_end; (prevents overriding an alarm

condition)
AR = PASS AY1;
IF GT JUMP hour-end; {only send every NUMSEC

seconds)
AY1 = one-ýhour;
AXO = -1;
DIM(SIGNALFLAG-) = AXO; (set flag to indicate IAMOK)

hour end:
AR = AY1 - 1;
DM(NUM...SEC) = AR;
AXO = DM(AXOH-save);
AY1 = DM(AY1H-save);
AR =DM(ARHl-save);

RTI;

* ENDMOD;

84

APPENDIX D: PROCEDURES FOR COMPILING NEW CODE AND EPROM
LOADING

Compiling New Code:

Below is a listing of the DOS batch file C-LINK.BAT (also
listed in Appendix C). This file causes several actions to
occur.

asm2l 2105_hdr.dsp -1 -c -s
asm2l -1 -c -s -cp -DDMSTACK -DIMAGE=RAM -DANY=RAM
frame lg.dsp
g21 clink.c frame_ig.obj -a 2105.ach -mreserved=i2,i3 -v
-runhdr 2105_hdr.obj -g -save-temps -Wall -o cexample
spl2l cexample cprom -i -loader -bs 2048 -bb 2048

The first line assembles the header file 2105_hdr.dsp.
This file contains the interrupt table settings, interrupt
handlers and initialization routines.

The second line was included to correct a bug in the
software sent by Analog Devices. The bug was in the file
frame_ig.dsp. This program is used by C-routines when calling
and returning from subroutines. It is only supposed to push
and pop non-dag (non-Data Address Generator) registers
(M,I,and L registers) on a stack. The bug came from the fact
that the routine would push and pop registers 12 and 13.
These registers are supposed to be reserved for the user and
are the only registers available for autobuffering. Without
the modification to frame_ig.dsp, a return from some routine
could possibly load an erroneous value into 12 and 13. This
would cause unpredictable results in operations using
autobuffering. The file framelg.dsp can be corrected by
removing all operations that affect 12 and 13.

The third command line compiles clink.c and links it with
frame_lg.obj and 2105_hdr.obj. If more than one file C-file
is to be compiled and linked, simply replace clink.c with
@files_all. Where files_all is an ASCII file containing the
C-files to be compiled (one path\filename per line).

The last line is the PROM splitter command line. The PROM
slitter converts executable into a format that can be
downloaded onto an PROM or EPROM. The -i switch converts the
executable code into Intel hex format. The -loader switch
automatically splits large code up between the boot pages as
specified by the -bs and the -bb switches. The -bs switch
specifies the boot page size in while the -bb switch specifies
the boot boundaries. The splitter will put the output in a
file named cprom.bnm.

85

/

EPROM Loading

The following procedure describes the process for
programming an EPROM at the Naval Postgraduate School.

1. Erase one D27C512 EPROM for 20-30 minutes under an UV
light. The digital lab manager in Bullard has an UV light
available for this purpose.

2. Ensure the cprom.bnm file is loaded on a 360KB 5.25"
floppy disk and insert disk containing *.bnm in drive a:\.

3. While the EPROM is being erased, goto the PC in the
digital lab that has the Modular Circuit Technology's (MCT)
PROM burner installed and type mct at the C:> prompt.

4. At the main menu select the Utility option.

5. Pick opt. 0 to convert the *.bnm file to binary format.

6. Enter the full path name of the input file when prompted
(i.e. a:\cprom.bnn).

7. Enter the output file name when prompted.

8. Enter I (Intel) for source file hex format.

9. Choose the Programmer option from the main menu.

10. Choose option 1 at the next menu to program an EPROM.

11. At the MFR prompt enter 08 for Intel chip.

12. Enter 12 for the type of chip (D27C521)

13. At the next menu choose option 2 to load the binary file
into the buffer.

14. At filename prompt, enter the full path name of the
binary file (i.e. a:\cprom.bin).

15. Set load address = 0.

16. Place an erased EPROM in the MCT unit as illustrated on
top of the unit.

17. Select option A. This will blank check, program, and
verify the EPROM.

18. If the erased EPROM is locked into the MCT ZIF socket,
enter Y at the "Ready to Start?" prompt.

86

/

19. When the verification is complete enter <CR> at the
prompt and remove the EPROM.

20. With power secured to the DSP board, insert the newly
programmed EPROM into Boot Memory socket. Ensure chip
orientation is correct. Pin #1 should be closest to jumpers
J1 and J2.

21. Program execution will begin at power-up or when reset
switch S1 is pressed.

87

LIST OF REFERENCES

1. Department of Defense, Unmanned Air Vehicles (UAV)
Master Plan, Program Executive Officer,
Mr. Robert Glomb, Washington D.C., March 1993.

2. Kaltenberger, B. R., Unmanned Air Vehicle/Remotely
Piloted Vehicle Analysis for Lethal UAV/RPV, Master's
Thesis, Naval Postgraduate School, Monterey, California,
September 1993.

3. Dickson,Paul, "Wiring down the war," in The Electronic
Battlefield, Indiana University Press, Bloomington,
Indiana, 1976, pp. 96-98.

4. Rodgers, A. L., and others, Surveillance and Target
Acquisition Systems, Brassey's Defence Publishers,
Oxford, 1983, pp. 164-170.

5. Bergin J. D., "The electronic battlefield," in United
States Army in Vietnam. Military Communications, a Test
for Technology, Center of Military History, United
States Army, Washington, D.C., 1986, pp. 392-393.

6. Jane's Battlefield Surveillance Systems, E. R. Hooton,
and Kenneth Munson, eds., 5th ed., Jane's Information
Group Limited, Coulsdcn, Surrey, United Kingdom, 1993,
pp. 51-52.

7. Interview between Mr. T. Reynolds, Mr. W. Dense, Mr. P.
Winters, Naval Surface Warfare Ce.iter, Silver Springs,
Maryland, and the author, 19 November 1993.

8. Stremler, F. G., Introduction to Communication Systems,
Third Edition, Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1992, pp.589-594.

9. Innovative Integration, SBC-31 Hardware Reference
Manual, Innovative Integration, Inc., Moorpark,
California, 1994, pp. 1-11.

10. EME-1601A Embedded Digital Signal Processor & DSP
Development System, Wavetron Microsystems, version 1.10,
June 1993.

11. Telephone conversation between Brent Roman, Wavetron
Microsystems and the author, 22 April 1994.

88

~"~-i - -

INZTXAL DISTRIBUTXON LIST

No. Copies
1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5101

3. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

4. Professor Michael K. Shields, Code EC/SL 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

5. Professor Murali Tummala, Code EC/TU 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

6. Professor Richard M. Howard, Code AA/HO
Department of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, California 93943-5106

7. Professor Isaac I. Kaminer, Code AA/KA 1
Department of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, California 93943-5106

8. LT Donald B. Howard 2
3216 Marshall Rd.
Ottawa, Kansas 66067

9. Farid Dibachi 1
Wavetron Microsystems
1197 Oddstad Drive
Redwood City, Ca.lifornia 94063

89

